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EXECUTIVE SUMMARY 

The Yellowstone Ecosystem Subcommittee (YES) asked the Interagency Grizzly Bear 

Study Team (IGBST) to re-assess a technique used in annual population estimation and 

trend monitoring of grizzly bears in the Greater Yellowstone Ecosystem (GYE). This 

technique is referred to as the Chao2 approach and estimates the number of females with 

cubs-of-the-year (hereafter, females with cubs) and, in association with other demographic 

data, is used by the IGBST to produce annual population estimates. Females with cubs are 

an easily recognizable population segment, and trends for this reproductive segment of the 

population are assumed to be representative of trend for the entire population. 

The overarching objective of the analyses presented in this report was to provide a 

more accurate representation of the GYE grizzly bear population using the current 

methodologies in place. Specifically, we addressed two limitations of the current Chao2 

approach: 1) underestimation bias associated with a distance criterion used to differentiate 

annual sightings of females with cubs into unique individuals and 2) limitations of the 

model-averaging approach to effectively distinguish among potential future population 

trajectories (decline, stability, and growth). 

The first issue addressed in this report is the underestimation bias associated with 

the rule set that Knight et al. (1995) developed to differentiate sightings of females with 

cubs into unique individuals (i.e., unique family groups). The rule set was originally 

designed to be conservative by reducing the risk of identifying more females with cubs 

than actually existed, primarily through use of a distance criterion of 30 km to separate 

sightings of unique females. This approach resulted in an underestimation bias, and 

previous research demonstrated that this bias increases with increasing number of females 

with cubs. Using location data from radio-marked females with cubs, we evaluated 

alternative distance criteria by simulating scenarios with varying numbers of true females 

with cubs and sightings. Findings from these analyses demonstrate that bias in estimates of 

females with cubs can be substantially reduced by changing the 30-km distance criterion in 

the rule set to 16 km, which produced relatively unbiased estimates. Findings also indicate, 

however, the importance of adaptability with regard to the distance criteria because of the 

complex relationships and biases among the various parameters involved in estimation of 
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unique females with cubs. The total number of annual sightings and the true number of 

females with cubs play particularly important roles. Whereas these analyses remind us that 

there is no perfect approach to estimating the number of females with cubs from sightings 

under various scenarios, they provide us with new tools to determine when and how to 

adapt the monitoring program. 

The second issue we were tasked to investigate was the potential for improvement 

of the technique referred to as model-averaging, which serves to smooth relatively high 

variation in annual estimates. This technique was chosen by YES as the basis for 

monitoring the Yellowstone grizzly bear population, as described in the 2016 Conservation 

Strategy. This choice was made in part because the technique has been well documented 

and population estimates derived from counts of females with cubs are conservative. Using 

simulations of population trends, we demonstrate why the model-averaging technique 

currently used cannot distinguish between plausible future trend scenarios. As a suitable 

alternative to model averaging, we propose the use of generalized additive models (GAMs). 

Using a suite of simulated trend dynamics relevant to management, we demonstrate GAM 

performance for tracking trends in females with cubs within the context of the annual 

monitoring program. We demonstrate the ability to not only document directional changes 

in population trend but also patterns of stabilization or resiliency after such changes. 

Furthermore, the proposed monitoring framework provides objective measures useful for 

early detection of directional changes in trend. The new framework is flexible, allowing 

retrospective analysis of Chao2-based estimates and future applications to time series of 

other population metrics, such as vital rates. 

The aforementioned updates provide us with new tools to determine when and how 

to adapt the monitoring program. Within the context of current monitoring protocols and 

effort, and considering the full suite of simulations presented in this report and previous 

studies, the IGBST plans to incorporate the following changes to the population monitoring 

protocol: 1) modify the distance criterion, starting with 16 km under current sampling 

conditions and 2) revise the population monitoring framework using GAMs as the basis for 

smoothing of annual estimates and detecting trends and changes in trend. 

Implementation of the 16-km distance criterion combined with use of GAM 

techniques would affect some of the population metrics (e.g., annual population size and 
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uncertainty, population trend, mortality rates) used to inform management responses. A 

primary consideration is that the 16-km distance criterion results in total population 

estimates derived from the Chao2 estimates that are greater than those we have reported 

in the past. This increase is due to a change in the implementation of the technique and 

more accurately represents the number of females with cubs in the GYE grizzly bear 

population. Additionally, interpretation of retrospective trend patterns may change due to 

the combination of a different distance criterion and enhanced trend monitoring based on 

the GAM approach we present here. Implementation will require relatively minor changes 

in the monitoring protocols described in Appendices B and C of the 2016 Conservation 

Strategy. Finally, we note that the IGBST has ongoing investigations into the merits of an 

Integrated Population Model (IPM), for which annual Chao2-based estimates are important 

input data. The IGBST plans to continue those investigations using the 16-km distance 

criterion to derive Chao2 estimates. 
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SECTION I – PROBLEM STATEMENT 

1. INTRODUCTION 

The Yellowstone Ecosystem Subcommittee asked the Interagency Grizzly Bear Study 

Team (IGBST) to re-assess performance of techniques used in annual estimation and trend 

monitoring of the Greater Yellowstone Ecosystem (GYE) grizzly bear population. The IGBST 

uses the nonparametric Chao2 technique to annually estimate the number of females with 

cubs and derive total population size and monitor trend (Interagency Grizzly Bear Study 

Team 2012). Females with cubs are easily recognizable and estimates for this reproductive 

segment of the population are used by the IGBST for inference regarding size and trend of 

the entire population. 

The estimation method involves several major steps. In the first step, sightings of 

females with cubs from systematic aerial surveys and opportunistic ground sightings are 

differentiated into a minimum count of unique family groups using a “rule set” that is 

primarily based on spatial, temporal, and litter size criteria (Knight et al. 1995). In the 

second step, an estimate of the total number of females with cubs (i.e., including females 

with cubs that are not sighted) is estimated based on sighting frequencies of unique family 

groups, using the Chao2 estimator (Chao 1989, Keating et al. 2002, Cherry et al. 2007). 

Because annual variation in these estimates of females with cubs (NChao2) is 

relatively high due to both sampling and process variance, as a third step the IGBST 

developed and implemented a technique to address uncertainty in trend estimates and use 

all available data to provide annual estimates of the number of females with cubs. The 

chosen technique involved fitting linear and quadratic regressions to the time series of 

annual NChao2 estimates starting in 1983 and using an information-theoretic approach to 

arrive at a model-averaged estimate for the endpoint of the time series (Harris et al. 2007). 

This approach provided a statistical mechanism to evaluate changes in trajectory for this 

population segment. Shifts in model weights for the linear and quadratic regressions of 

NChao2 would be indicative of changes in trend. This approach also resulted in smoothing of 

annual population estimates, thus enhancing interpretation. 
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The model-averaged Chao2 technique was chosen by the Yellowstone Ecosystem 

Subcommittee as the basis for monitoring of the Yellowstone grizzly bear population, as 

described in the 2016 Conservation Strategy (Yellowstone Ecosystem Subcommittee 2016). 

This choice was made in part because the model-averaging technique has been well 

documented, it has effectively tracked population trends, and population estimates derived 

from counts of females with cubs are conservative. 

We assessed two areas of potential improvement in the current Chao2 estimation 

approach. First, underestimation bias associated with estimation of unique females with 

cubs has been documented (Schwartz et al. 2008), but approaches to correct this bias have 

not been fully investigated. Underestimation bias increases with higher densities of females 

with cubs and thus constrains our ability to detect changes in the size of this population 

segment, from which estimates of total population size are derived. 

Second, it is desirable to have the capability to track changes in population size over 

time in various scenarios of population trend, particularly to inform policy-based decisions 

regarding management objectives and the use of mortality thresholds tied to different 

population levels. Although averaging of linear and quadratic models proved useful during 

the robust- to moderate-growth period of population recovery from smaller population 

sizes in the 1980s and 1990s, it has shown less utility for detecting changes in trend during 

the period for slower growth to stability occurring since the early 2000s. Model-averaging 

has shown little power to accurately distinguish among future population scenarios that 

may involve periods of decline, stability, or growth. 

The overarching objective of the analyses presented in this report was to provide a 

more accurate representation of the GYE grizzly bear population using the current 

methodologies in place. We first explain the importance of addressing both issues. In 

Section II, we investigate alternatives to enhance the accuracy of estimates of females with 

cubs, and in Sections III and IV we explore options to improve the ability to detect changes 

in trend of those estimates. We apply these alternative techniques to empirical data in 

Section V and present a synthesis. 
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2. UNDERESTIMATION BIAS 

Counts of distinct females with cubs from aerial and ground sightings have provided 

an important basis for monitoring the GYE grizzly bear population since 1975. Although 

they initially relied on subjective criteria, it was recognized that a minimum number of 

distinct females with cubs could be estimated each year if criteria were stringent enough 

(Knight et al. 1995). These criteria have evolved since 1975 and a rule set was designed to 

distinguish unique females with cubs (i.e., family groups) based on annual sightings as 

described in Knight et al. (1995). The protocol came to be known colloquially as the “Knight 

rule set” and was designed to reduce the probability of erroneously classifying multiple 

sightings of a single animal as being from multiple animals. In summary, the Knight et al. 

(1995) rule set distinguished sightings of unique females with cubs based on 3 primary 

criteria: 1) distance between sightings, 2) family group descriptions, and 3) time between 

sightings. Minimum distance for 2 groups to be considered distinct was based on annual 

ranges, travel barriers, and typical movement patterns. A movement index was calculated 

using standard diameter of annual ranges of all radiomarked females with cubs that were 

monitored during May 1–August 31 (Blanchard and Knight 1991). The mean standard 

diameter for all annual ranges of females with cubs was 15 km (SD = 6.7 km). Knight et al. 

(1995) estimated the average maximum travel distance as twice the standard diameter, or 

30 km, and used this distance to distinguish sightings of unique females with cubs from 

repeat sightings of the same female. Given that the population was in an early phase of 

recovery and demographic data were limited, this was a purposely conservative approach. 

When applicable, family groups observed within 30 km of each other were distinguished by 

other factors, which are described in more detail in Knight et al. (1995) and Schwartz et al. 

(2008). 

Schwartz et al. (2008) investigated bias due to the different components of the rule 

set by using simulations that generated “sightings” of females with cubs across the 

landscape from sampling actual telemetry data. The most relevant finding from that study 

was that the rule set returned increasingly negative-biased estimates (i.e., underestimates) 

as simulated number of unique females with cubs increased. With 10 true females with 

cubs, the rule set was negatively biased by 12%, but this bias increased to 48% for a true 
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simulated population of 100 females with cubs (see Schwartz et al. 2008 [page 550, Fig. 5]). 

As density increases, obtaining an unbiased estimate of the true number of females with 

cubs from sighting data is difficult because it becomes increasingly challenging to 

distinguish unique animals. In section II, we address the underestimation bias of the Chao2 

estimator as identified in Schwartz et al. (2008) using simulations with alternative distance 

criteria under different scenarios of population size. We propose an alternative criterion 

that results in relatively unbiased estimates. 

3. MODEL AVERAGING 

Starting in 2007, the IGBST has used model averaging of annual NChao2 estimates as a 

technique to 1) smooth annual variation and 2) monitor changes in trend. This approach 

involves annually fitting a linear and quadratic regression model to time series of NChao2 

estimates (natural log scale; starting with time period 1983–2006) (Chao 1989, Keating et 

al. 2002, Cherry et al. 2007) and using Akaike’s Information Criterion (AICc) weights to 

evaluate the quantitative support for each model. The conceptual framework for this 

approach was provided by Harris et al. (2007), describing the use of an information-

theoretic approach to detect a deviation in trajectory from the linear population increase 

documented at that time. This approach was based on the premise that the parameter 

estimate for the quadratic term would become negative if growth slowed, for example if the 

population reached carrying capacity (Harris et al. 2007:171). In 2011, the majority of the 

AICc weight shifted from the linear (AICc weight = 0.49) to the quadratic model (AICc weight 

= 0.51) for the first time, suggesting a slowing of growth had occurred for the female with 

cubs segment of the population. 

The 2011 shift in AICc weight towards the quadratic model triggered a Biology and 

Monitoring Review by the IGBST (U.S. Fish and Wildlife Service 2007:8), which indicated 

that the change in trajectory most likely started in the early 2000s (Interagency Grizzly 

Bear Study Team 2012). Segmental regression of NChao2 estimated for the period 1983– 

2020 corroborates this interpretation, with a significant slope parameter (β = 0.052, SE = 

0.0096, P < 0.001) for the 1983–2001 segment but with less statistical evidence of a trend 

for the period 2002–2019 (β = 0.014, SE = 0.0075, P = 0.075; Fig. 1). Known-fate 
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Fig. 1. Annual NChao2 estimates (black circles and dashed line) of the number of female grizzly bears 
with cubs and fitted linear regression (solid black line; log(NChao2 ~ Year) with 95% confidence 
interval (grey), Greater Yellowstone Ecosystem, 1983–2019. Segmental regression was fitted to the 
time series (black solid line), and showed growth during 1983–2001 (equivalent to λ = 1.052), after 
which the growth rate slowed but remained positive for the period 2002–2019 (equivalent to λ = 
1.014). 
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monitoring data also provided evidence of slowing of population growth and the potential 

role of density-dependent effects in the core of the ecosystem (i.e., the Recovery Zone) 

since the early 2000s (Interagency Grizzly Bear Study Team 2012, van Manen et al. 2016). 

Although the AICc weighting technique proved useful for detecting a change from 

robust to modest growth during the period of population recovery, this approach has little 

power to accurately distinguish among future scenarios (i.e., stability, growth, or decline; 

Interagency Grizzly Bear Study Team 2005). During IGBST Demographic Workshops held 

in 2011–2012, it was recognized that additional candidate models needed to be considered 

in the future to allow for the possibility that the population indeed stabilized (Interagency 

Grizzly Bear Study Team 2012). Although this concern was noted previously, it has not 

been documented extensively. Therefore, we provide some background and results of 

simulation analyses to illustrate why the model-averaging technique will not be effective to 

detect future changes in population trend derived from counts of females with cubs. 

We tested the current model-averaging protocols for future application by 

simulating NChao2 estimates under various scenarios of increasing, stable, or decreasing 

estimates (see Appendix A for details). These simulations demonstrate the inability of 

relative AICc weights for the linear and quadratic regressions to distinguish between 

plausible future trend scenarios. The empirical data show that some AICc model weight 

shifted from the linear to quadratic model starting in 2007, and by 2011, model weight was 

greater for the quadratic model compared with the linear model (Figs. 2A and 2B). The 

model simulations starting in 2017 show that eventually all weight would remain on the 

quadratic model for the remainder of the time series. When we repeated the simulations 

with λ = 0.978 (corresponding to 90% annual survival of independent-age females; IGBST, 

unpublished data) for the period 2019–2041, AICc weights for the quadratic model showed 

an almost identical pattern as the λ = 1.0 scenario (Figs. 2C and 2D). 

The primary conclusion from these simulations is that the AICc weighting approach 

as currently implemented cannot distinguish between population stability and decline. 

Extending the time period well beyond 2033 for these same simulations similarly showed 

the majority of the AICc model weight would remain with the quadratic model. We note this 

is not an unexpected result. Outcomes from IGBST demographic workshops in 2011–2012 
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Fig. 2. Empirical (1983–2019) and simulated (2020–2041; right of vertical dashed line) NChao2 

estimates of the number of female grizzly bears with cubs in the Greater Yellowstone Ecosystem 
and associated AICc weights for the quadratic regression model. A) Simulated (n = 1,000 replicates) 
scenario with λ = 1.000. B) Annual AICc weight for the quadratic model associated with model-
averaged values of NChao2 estimates shown in A. C) Simulated (n = 1,000 replicates) scenario with λ 
= 0.978 over 10 years followed by λ = 1.000 through the year 2041. D) Annual AICc weight for the 
quadratic model associated with model-averaged values of NChao2 estimates shown in C. 
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indicated that model averaging of linear and quadratic regressions would not 

accommodate the possibility of the population becoming stable, because the quadratic term 

imposes a declining trend during later years of the time series (Interagency Grizzly Bear 

Study Team 2012:28). Workshop participants agreed that alternative approaches would be 

required in the future. To address this concern, we present the use of generalized additive 

models, or GAMs, as an alternative. We provide an introduction to GAMs in Section III of 

this report and detail the alternative approach in Section IV. 
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SECTION II – CORRECTING UNDERESTIMATION BIAS: ALTERNATE 

DISTANCE CRITERIA 

1. INTRODUCTION 

Underestimation bias associated with NChao2 estimates is primarily due to the use of 

a conservative rule set (Knight et al. 1995) to estimate the number of unique females with 

cubs and, to a much lesser extent, inherent characteristics of the Chao2 correction (Keating 

et al. 2002, Cherry et al. 2007). When separating sightings of unique females with cubs, the 

rule set was constructed to reduce the risk of identifying more individuals than existed. 

Based on simulations by Schwartz et al. (2008), negative bias increases with population 

size. The analyses of Higgs et al. (2013), who developed a mark-resight technique to 

address this underestimation bias, support this. The simulations of Schwartz et al. (2008) 

showed that the driving factor behind the bias was the distance criterion. Here, we extend 

the work of Schwartz et al. (2008) to allow updating the distance criterion in the rule set 

and enhance accuracy of the annual estimate of unique females with cubs. 

2. METHODS 

Construction of Simulated Datasets 

Schwartz et al. (2008) developed a computer algorithm to automate application of 

the Knight et al. 1995 rule set consistent with the manual implementation by IGBST 

personnel. They then used location data of radio-marked females with cubs to simulate 

performance of the rule set under various hypothetical, but realistic levels of “true” 

abundance of females with cubs. To accomplish the latter, radio locations of bears from 

multiple years were overlaid on a map of the ecosystem as if they had all been produced in 

a single year, and bears were then randomly sampled from this “superpopulation” of 

observable bears. Because live trapping bears for radio-monitoring purposes is not feasible 

in some portions of the ecosystem, sets of known radio-monitoring locations were placed 

on the map to populate areas in which few radio-marked females had been located but 

were known to be occupied by adult female bears. The result was a rather uniform 

distribution of bear locations for the simulations to evaluate the Knight et al. 1995 rule set, 
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with the goal of producing realistic inter-sighting distances and associated dates and times, 

which are crucial components of the rule set. They then took repeated samples (n = 500 

simulations) of 10, 20, 40, 80, and 100 true females with cubs from this superpopulation to 

represent variability in samples obtained by chance through the sampling protocol. 

For this study, we built on the general approach of Schwartz et al. (2008), but with 

slight modifications. First, to simulate observations of females with cubs, we compiled the 

most up to date location data: aerial telemetry locations (May 1–August 31) and ground 

sightings (prior to August 31) of radio-collared females with cubs collected annually during 

1997–2019. This dataset included 17 years of data not included in Schwartz et al. (2008), 

allowing for evaluation of potential changes over time. Following the stochastic simulation 

procedures of Schwartz et al. (2008), we created 1,000 simulated datasets with “true“ 

population sizes of females with cubs at each of 5 different levels of plausible sizes (Ntrue = 

50, 60, 70, 80, and 90). 

For each replicate, we allowed only one sample year to be chosen for any female 

with multiple years of data to prevent unrealistic spatial overlap (Schwartz et al. 2008). 

Similarly, because our location sample spanned more than 20 years, spatial overlap among 

different individuals could occur that is unrealistic. For example, if a female died and her 

home range was later occupied by a different female, randomly selecting both individuals 

may create an unrealistic dyad for evaluation of distance criteria because of unrealistic 

placement of home ranges directly on top of each other. Therefore, when selecting 

individuals, we required the activity center of a newly selected candidate female to be at 

least 1 km from any activity center of a female previously selected while still allowing two 

simulated females with cubs to have a high degree of spatial overlap. 

We varied the total number of simulated “sightings” for each replicate as a ratio of 

Ntrue, based on empirical ratios of total sightings (n) and NChao2 estimates for the period 

1997–2019 (total sightings:unique females with cubs [n/NChao2]; range = 1.5–3.2; mean = 

2.3). Thus, larger Ntrue resulted in a linearly increasing n. For example, based on 1,000 

replicates, Ntrue = 50 and Ntrue = 90 females with cubs resulted in 105–159 and 189–287 

simulated sightings, respectively. For simulated sightings, we retained the empirical day, 

month, time, and coordinate values from the telemetry records. 
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We randomly assigned litter size to the earliest sighting of each female using 

discrete inverse transformation sampling (Devroye 1986) of empirical litter size data for 

the period 1997–2019. We then simulated changes in litter size caused by cub mortality by 

applying estimated daily cub survival rates (Interagency Grizzly Bear Study Team 2012) to 

the number of days between simulated sightings of the same female. Simulated sighting 

records were censored if complete litter loss occurred, because actual counts do not 

include females without cubs. 

When observed females with cubs had previously been radio-collared, observers 

verified the telemetry frequency to determine the individuals’ identification number. This 

information is included in the clustering algorithm and increases algorithm accuracy as 

these individuals cannot be mis-identified (Schwartz et al. 2008). To simulate collared 

females with cubs, we assigned a pseudo-collar identifier to a proportion of females with 

cubs in each replicate, based on a random sample from the distribution of empirical radio-

monitored females with cubs on an annual basis (1997–2019; range = 3–13 females with 

cubs/year). 

Evaluation of Distance Criteria 

To assess the accuracy of different distance criteria, we used the same computer 

program as Schwartz et al. (2008) to cluster sightings into individuals, varying the distance 

threshold from 12 to 30 km in 2-km intervals (i.e., 10 distance criteria) and holding all 

other parameters equivalent, including setting the spatial extent to the area monitored by 

the IGBST (the Demographic Monitoring Area [49,931 km2]). This resulted in 50,000 

output datasets, with 1,000 simulated datasets of females with cubs for each of the 10 

distance criteria and the 5 levels (Ntrue = 50, 60, 70, 80, and 90) of females with cubs (5 

population levels × 10 distance criteria × 1,000 replicates each = 50,000). 

To evaluate distance criteria at the individual bear level, we compared the unique 

identifier for true females to the predicted cluster identifier using a confusion matrix and 

associated classification metrics (Hossin and Sulaiman 2015). We calculated the number of 

lumping errors (2 or more different females with cubs classified as a single family group) 

versus splitting errors (a single family group classified as 2 or more different females with 

cubs) and the overall accuracy incorporating both types of errors. At the replicate level, we 
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compared the true number of females with cubs to the predicted number of clusters, or 

unique females with cubs. Because the Chao2 bias-correction uses frequencies of sightings, 

we also calculated the number of predicted females with cubs sighted once (f1), twice (f2), 

or more than twice (f>2) to allow comparison of the true and predicted Chao2 bias-

correction factor (Chao 1989, Cherry et al. 2007). 

3. RESULTS 

Sampling Frame Summary 

The pool of data from which simulations were drawn, hereafter referred to as the 

sampling frame, contained 1,139 verified locations of females with cubs during 154 

sampling years, representing 117 unique bears (Fig. 3). The number of locations per unique 

female varied from 1 to 36 (𝑥̅𝑥 = 7.4; 𝜎𝜎 = 4.1). Median distance between locations within 

the same individual averaged 9.1 km (𝜎𝜎 = 5.9 km), ranged from 0.2 to 37 km, and lacked 

evidence of directional trend over time (1997–2019; 𝛽̂𝛽 = −0.05; 𝑃𝑃 = 0.49; adjusted 𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌 

𝑅𝑅2 = −0.004). The median diameter of the smallest circle encompassing all locations of an 

individual was 16.4 km, with 86% of individuals’ minimum diameter calculations <30 km. 

Similar to inter-location distances, no trend was evident for this measurement over time 

(1997–2019; 𝛽̂𝛽 = −0.24; 𝑃𝑃 = 0.16; adjusted 𝑅𝑅2 = 0.007).𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌 

Although it was necessary to pool individuals across years to meet sample size 

requirements for simulations, the empirical data contained 504 unique pairs of locations 

among different individual females with cubs within the same year. Whereas most of these 

pairings were located far from each other, approximately 9% (n = 44) had annual location 

centroids separated by less than the current distance criteria of 30 km (median centroid 

separation = 22 km). Within this subset of “neighboring” females, 48% had a minimum 

distance between their telemetry locations and those of their nearest neighbor (median = 

4.0 km) that was smaller than the average distance between their own telemetry locations 

(median = 9.1 km). Although these results are not applicable to the overall population, they 

are demonstrative of a sizable proportion of females with cubs being located closer in 

space than the current Knight et al. (1995) 30-km distance criteria within the same season. 
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Fig. 3. Simulated sighting data frame containing 1,139 records of 154 sample years (represented by 
different colors) of female grizzly bears with cubs (sample year = telemetry data for 1 female with 
cubs for 1 year) representing 117 unique bears in the Greater Yellowstone Ecosystem. Records 
were composed of aerial telemetry locations (May 1–August 31) and ground sightings (prior to 
August 31) of females with cubs collected during 1997–2019. Yellowstone and Grand Teton 
National Parks are shown as grey polygons for spatial reference. 

13 



 

 
 

  

   

   

   

   

 

  

   

 

    

 

   

    

   

     

  

  

    

           

    

  

 

  

 

  

     

      

  

  

 

Simulated Datasets Summary 

Simulated datasets varied by the number of unique females (Ntrue) and total 

observations (n; number of random draws). For any given range of total observations, 

fewer unique females resulted in a larger absolute number of locations (total 

observations – Ntrue) to be allocated to a smaller number of individuals. Thus, when 

controlling for total observations, the average and maximum locations per female, or 

sighting frequencies, decreased with increasing Ntrue. However, because total observations 

were determined by a multiplier of Ntrue, median sighting frequencies based on the full 

1,000 replicates were stable (e. g. , 𝑥̅𝑥 = 2.27, 𝜎𝜎50 = 1.29; 𝑥̅𝑥 = 2.28, 𝜎𝜎90 = 1.30;50 90 

subscripts represent Ntrue level). The average minimum sighting frequency was always 1 

(i.e., at least 1 individual was only sighted 1 time) and the average maximum number of 

times sighted ranged from 18 (Ntrue = 50) to 20 (Ntrue = 90). Sighting frequencies were 

dominated by f1 and f2 frequencies (i.e., observed once or twice, respectively), which on 

average accounted for ~64% of the total simulated sightings. Proportionally, average f1 and 

f2 frequencies were relatively constant across levels of Ntrue females (𝑓𝑓̅ = 0.337; 𝑓𝑓̅ = 150 250 

0.307; 𝑓𝑓̅ = 0.339; 𝑓𝑓̅ = 0.307). However, absolute means and standard deviations 190 290 

increased with increasing Ntrue, reflecting the larger sample sizes associated with larger 

Ntrue (𝑓𝑓̅ = 16.8, 𝜎𝜎 = 5.4; 𝑓𝑓̅ = 15.4, 𝜎𝜎 = 4.4; 𝑓𝑓̅ = 30.5, 𝜎𝜎 = 9.4; 𝑓𝑓̅ = 27.6, 𝜎𝜎 = 4.9).150 250 190 290 

Also, 95% of simulated f1: f2 ratios were ≤2.0, and within this subset, mean f1: f2 ratios were 

relatively constant across Ntrue levels (𝑥̅𝑥 = 1.12, 𝜎𝜎 = 0.01). 

At the intra-bear level, the average distance between an individual’s relocations was 

invariant to the total unique number of females in the simulation (𝑥̅𝑥50 = 9.6 km, 𝑥̅𝑥 = 90 

9.5 km). However, the larger sample sizes associated with higher unique female levels 

resulted in reduced variation across simulations (𝜎𝜎50 = 1.23, 𝜎𝜎90 = 0.84). Similarly, the 

minimum diameter circle encompassing all of a female’s simulated sightings was relatively 

constant across the levels of unique females (𝑥̅𝑥50 = 16.2 km, 𝑥̅𝑥 = 16.1 km) but showed 90 

decreasing variance with increasing Ntrue levels (𝜎𝜎50 = 1.1 km, 𝜎𝜎90 = 0.74 km). This 

consistency was expected, as the spread of an individual’s locations was entirely dependent 

on random sampling from its own set of points in the sampling frame. Conversely, metrics 

relating an individual’s locations to other bears (i.e., inter-bear) were sensitive to the 
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number of unique females being simulated. The average distance from each individual’s 

centroid location (i.e., home-range center) to that of their nearest neighbor’s centroid 

decreased with increasing unique females (𝑥̅𝑥 = 13 km, 𝜎𝜎50 = 8.6; 𝑥̅𝑥 = 9.2 km, 𝜎𝜎90 = 50 90 

6.4). The number of “nearest neighbors” with centroids within 30 km also increased with 

Ntrue levels, showing an 81% increase from 50 to 90 unique females (𝑥̅𝑥 = 3.8 km, 𝜎𝜎50 = 50 

2.3; 𝑥̅𝑥 = 6.9 km, 𝜎𝜎90 = 3.6). Because the area of the sampling frame (i.e., Demographic 90 

Monitoring Area) was fixed across all simulation replicates, these patterns reflect the 

increasing density of simulated females as Ntrue increases. 

Alternative Distance Criteria 

Identifying the number of unique females with cubs.—Impacts of alternative 

distance criteria in the Knight et al. (1995) rule set on classification performance are best 

understood at two distinct scales. At the broadest scale we considered the task of 

determining how many unique females with cubs (i.e., distinct family groups) are present 

in sets of annual observations. This corresponds to the “𝑚𝑚” parameter in the Chao2 
(𝑓𝑓12 − 𝑓𝑓1)equation �𝑁𝑁Chao2 = 𝑚𝑚 + � and is the largest contributor to the estimate of 𝑁𝑁Chao2.
2(𝑓𝑓2 + 1) 

We refer to this as the “unique ID-level” (classification of individual sightings are not 

considered) and assessed the presence or absence of unique IDs of females with cubs in the 

simulation (true IDs) and modeled output (predicted IDs). This approach reduces 

classification to three distinct outcomes (Table 1): 1) true positives (female IDs correctly 

predicted); 2) false positives (female IDs erroneously predicted to be present when 

observations of a single female ID are split into multiple IDs); and 3) false negatives (female 

IDs that are present but missed because observations of multiple IDs are combined into 

one ID). Table 1 shows the true number of unique IDs is the sum of those correctly 

classified (true positives), plus those that were missed (false negatives). Therefore, only 

when the number of false positives equals false negatives are the correct number of unique 

IDs predicted. We illustrate these relationships graphically for Ntrue = 70 simulations in Fig. 

4. These relationships highlight that a simple metric of performance such as accuracy 

(the fraction of predictions that are true) is not particularly useful for our assessment 
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Table 1. Outcomes for classification of simulated sightings at the unique ID-level of female grizzly 
bears with cubs. True positives represent unique IDs that are correctly predicted to be present. 
False negative events occur when observations of two or more true unique female IDs are 
erroneously combined into a single predicted female ID, resulting in missed female IDs. False 
positive events occur when observations of a single female ID are erroneously split into multiple 
IDs, resulting in IDs for females that do not exist. True negatives are not applicable for this 
classification assessment because unique IDs cannot be absent from both the simulated and 
predicted classes. Because the total number of true unique IDs is true positive + false negative cells, 
the correct predicted number of simulated IDs will occur if the number of false positive equal the 
number of false negative IDs. 

Simulated ID (true) 

Present Absent 

Pr
ed

ic
te

d 
ID Present True positive 

(correct) 
False positive 

(false female IDs) 

Absent False negative 
(missed female IDs) (not applicable) 
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Fig. 4. Accuracy at the unique ID-level for Ntrue of 70 female grizzly bears with cubs based on 
simulations applying varying distance criteria (x-axis) to the Knight et al. (1995) rule set to 
differentiate unique females with cubs (y-axis) from simulated sightings. Blue bars represent the 
mean number of true bear IDs that were correctly identified in the predicted output (n = 1,000 
replicates per distance criterion), with numbers in parentheses representing the mean proportion 
of total unique females correctly identified. Green bars represent mean number of erroneously 
identified female IDs when observations of a single ID are split into multiple IDs (false positive 
events). Red bars represent mean number of true unique IDs erroneously combined into a single 
predicted unique ID, resulting in missed bear IDs (false negative events). The mean total estimated 
unique females with cubs is represented by the sum of blue and green bars). 
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because it does not indicate whether false negatives or false positives are more common 

(Lever et al. 2016). 

The concepts of false negative and false positive events (Table 1, Fig. 4) are 

combined with correct assignments of true positive in the following classification metrics 

(Ting 2011). At the unique-ID level, precision is the proportion of predicted female IDs that 

are correct: 
true positive precision = ,

true positive + false positive 

whereas recall is the proportion of true female IDs that are correctly identified: 
true positive recall = .

true positive + false negative 

Higher precision and recall are indicative of better classification performance, but 

generally come at a cost to one another (Table 2). For example, the 30-km distance 

criterion has high precision (𝑥̅𝑥 = 0.99) because it rarely splits observations of a single 

female ID into multiple IDs (false positives). However, application of this criterion comes at 

the cost of relatively low recall (𝑥̅𝑥 = 0.69) because of a higher average probability of 

erroneously combining true IDs into a single predicted ID, so that true female IDs are 

missed (false negatives). Conversely, the 12-km distance criterion had the highest overall 

mean recall (𝑥̅𝑥 = 0.92), because on average it rarely misses a true female ID. However, 

using this shorter distance criterion comes at the cost of precision (𝑥̅𝑥 = 0.87) because of 

higher prevalence of predicted female IDs that are not present in the set of true IDs. 

The above examples and Table 2 highlight several important points related to 

evaluating distance criteria. First, as isolated classification metrics, precision and recall are 

incomplete, and must be interpreted relative to each other. Second, because their formulas 

only differ by the false negative and false positive terms in the denominator, the conclusion 

regarding balancing of error types holds true for precision and recall: when they are equal 

the correct number of simulated bears is predicted. Third, maximizing classification 

performance does not necessarily result in minimizing bias in m, the predicted numbers of 

unique females with cubs. Instead, the balancing of false negatives and false positives is 

more important than maximizing the number of true positives. Therefore, comprehensive 
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Table 2. Precision and recall global means (all levels of Ntrue) and means at the unique ID-level for 
Ntrue = 50 and Ntrue = 90 female grizzly bears with cubs. Simulations were based on empirical 
telemetry and ground sighting data of females with cubs from the period 1997–2019, for distance 
criteria of 12 to 30 km in 2-km steps, and n = 1,000 replicates for each combination of distance 
criterion and Ntrue level. 

Precision 
(true positives / all positives) 

Recall 
(true positives / all correct) 

Distance criterion 
(km) Global mean Mean 

Ntrue = 50 
Mean 

Ntrue = 90 Global mean Mean 
Ntrue = 50 

Mean 
Ntrue = 90 

12 0.87 0.85 0.88 0.92 0.94 0.89 
14 0.91 0.89 0.92 0.89 0.92 0.87 
16 0.94 0.92 0.95 0.87 0.91 0.83 
18 0.96 0.94 0.97 0.84 0.89 0.80 
20 0.97 0.96 0.98 0.81 0.87 0.77 
22 0.98 0.97 0.98 0.79 0.84 0.73 
24 0.98 0.98 0.99 0.76 0.83 0.71 
26 0.99 0.99 0.99 0.74 0.80 0.68 
28 0.99 0.99 0.99 0.72 0.78 0.66 
30 0.99 0.99 0.99 0.69 0.76 0.63 
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assessment of the distance criteria must integrate precision and recall and at the same time 

weigh these results against measures of bias. One such measure is the 𝐹𝐹β score, which is an 

aggregative performance metric of precision and recall. It is bounded by 0 and 1, with 

higher values indicating better classification performance (Lever et al. 2016). The 𝐹𝐹β score 

uses the parameter β to control the balance of precision and recall: 
precision × recall 𝐹𝐹β = (1 + β2) � �.

β2 × precision + recall 

As β decreases, precision is given greater weight. Because of the previously outlined 

positive aspects of balancing precision and recall, we set β = 1. Mean 𝐹𝐹β scores were 

highest at distance criteria between 14 and 18 km (Fig. 5C) whereas mean absolute error 

(bias) was minimized at distance criteria between 12 and 16 km (Fig. 5D). The top-

performing distance criteria for both measures decreased with increasing Ntrue level (Table 

3). The differences between the top performing distance criteria for classification 

performance versus bias reflects the paradox that optimizing classification performance 

does not guarantee minimization of absolute bias. However, from a practical standpoint it 

is important to recognize these differences were always adjacent distance criteria (e.g., 14 

versus 16 km) and differences in mean 𝐹𝐹β scores were within 1% of each other while 

difference in mean bias were ≤5% of the Ntrue level (Table 3). 

Whereas mean bias does reflect average performance, it is important to consider the 

variation around these means in terms of avoiding an overestimation bias in real-world 

applications of a single monitoring year. To reflect the likelihood of overestimation for each 

of the top-ranking distance criteria in Table 3, we also calculated the proportion of 

simulations with positive bias, positive bias greater than 5% of Ntrue, and positive bias 

greater than 10% of Ntrue. The top-ranking distance criteria based on minimizing m bias 

resulted in substantially higher proportions of overestimation than the top-ranking 

distance criteria based on classification performance (Table 4). 
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Fig. 5. Classification performance at the unique ID-level shown by A) recall, B) precision, C) 𝐹𝐹𝛽𝛽 

score, and D) predicted bias in the number of unique females (m bias) based on simulations 
applying varying distance criteria to the Knight et al. (1995) rule set to identify unique female 
grizzly bears with cubs from sightings. For each Ntrue level, distance criteria range from 12 to 30 km 
in 2-km steps (indicated by color gradient and arranged from left to right). Each boxplot 
summarizes n = 1,000 simulated datasets. 
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Table 3. Top-ranking distance criteria based on mean classification performance (𝐹𝐹β score) and 
mean unique-ID estimation bias (predicted m – true m) for each Ntrue level based on simulations (n 
= 1,000 replicates for each Ntrue level) applying varying distance criteria to the Knight et al. (1995) 
rule set to identify unique female grizzly bears with cubs from sightings. For each top-ranking 
model the mean 𝐹𝐹𝛽𝛽 score and mean m bias are shown for comparison. 

Maximizing classification 
performance 

Minimizing 
abs(estimation bias) 

Ntrue 

Top-ranking 
distance 
criterion 

(km) 

Mean Fβ 

score 
Mean 

bias in m 

Top-ranking 
distance 
criterion 

(km) 

Mean Fβ 

score 
Mean 

bias in m 

50 18 0.914 –2.845 16 0.912 –0.612 
60 16 0.908 –2.911 14 0.904 0.608 
70 16 0.900 –5.067 14 0.899 –0.667 
80 14 0.895 –2.865 14 0.895 –2.865 
90 14 0.894 –5.150 12 0.887 1.535 
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Table 4. Top-ranking distance criteria based on mean classification performance (𝐹𝐹β score) and 
mean unique-ID estimation bias (predicted m − mtrue) for each Ntrue level based on simulations (n = 
1,000 replicates for each Ntrue level) applying varying distance criteria to the Knight et al. (1995) 
rule set to identify unique female grizzly bears with cubs from sightings. For each top-ranking 
model, the mean m bias and proportion of simulations greater than 0, greater than 5%, and greater 
than 10% of Ntrue are shown.   

Maximizing classification performance Minimizing abs(estimation bias) 

Ntrue 

Top-
ranking 
distance 
criterion 

(km) 

Mean 
bias 
in m 

Prop. 
positive 

bias 

Prop. 
bias    

>+5% 
Ntrue 

Prop. 
bias    

>+10% 
Ntrue 

Top-
ranking 
distance 
criterion 

(km) 

Mean 
bias 
in m 

Prop. 
positive 

bias 

Prop. 
bias    

>+5% 
Ntrue 

Prop. 
bias 

>+10% 
Ntrue 

50 18 –2.845 0.18 0.08 0.02 16 –0.612 0.37 0.22 0.07 

60 16 –2.911 0.21 0.08 0.02 14 0.608 0.50 0.28 0.11 

70 16 –5.067 0.16 0.06 0.01 14 –0.667 0.41 0.25 0.10 

80 16a –7.935 0.08 0.02 0 14 –2.865 0.30 0.14 0.04 

90 14 –5.150 0.23 0.11 0.02 12 1.535 0.53 0.36 0.17 
a16 km was used in place of the top model of 14 km to demonstrate difference between distance criteria. 
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Correctly assigning sightings to IDs.—We also assessed classification performance 

at the location (sighting) level, reflecting the ability to correctly assign sightings to their 

respective true IDs. We used a multi-class confusion matrix where each row and column 

represent a unique ID (rows = predicted, columns = true). For multi-class classification 

problems where each observation can only be assigned to a single class label, false 

positives for one class will be false negatives for other classes, and vice-versa. As a result, 

average precision = recall = Fβ score. Therefore, when summarizing classification 

performance at the sighting-level, mean Fβ scores are sufficient. 

As expected, mean Fβ scores were lower at the sighting level than the unique-ID 

level; however, patterns related to distance criteria were similar to those at the unique-ID 

level (Fig. 6). Top-performing distance criteria ranged from 12 to 16 km, with smaller 

distance criteria performing better with increasing Ntrue. Similar to the unique-ID level, 

differences between means of the highest-ranked distance criteria and closest competitors 

were small (Fig. 6). 

We focused our assessment at the sighting level on females sighted once (𝑓𝑓1) and 

twice (𝑓𝑓2), given that sighting frequencies greater than two are not used in the Chao2 

equation. Ninety-five percent of simulated and 96% of predicted 𝑓𝑓1:𝑓𝑓2 ratios were ≤2.0. 

Means and standard deviations of 𝑓𝑓1:𝑓𝑓2 ratios decreased with increasing distance criteria 

and Ntrue level (Table 5). Simulated datasets showed a strong positive correlation between 
2 − 𝑓𝑓1)the 𝑓𝑓1:𝑓𝑓2 ratio and the adjustment component to m �i. e. , (𝑓𝑓1 � in the Chao2 equation at 

2(𝑓𝑓2 + 1) 

all Ntrue levels (Spearman′srank 𝑟𝑟�𝑠𝑠 = 0.93, 𝜎𝜎 = 0.01). Therefore, we used the adjustment 

component of the Chao2 equation to quantify bias related to sighting frequencies because it 

is the direct application of 𝑓𝑓1 and 𝑓𝑓2 counts and interpretation in terms of Chao2 units is 

intuitive. We note this assessment of bias in the Chao2 adjustment is reflective of the bias 

relative to the simulated frequencies (i.e., perfect clustering of all locations assigned to the 

correct unique ID), not bias associated with females not observed. Distance criteria had a 

strong consistent pattern across all Ntrue levels, with effects over the range of distance 

criteria (12 versus 30 km) outweighing effects within distance criteria over the range of 

Ntrue (Fig. 7). 
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Fig. 6. Boxplots for Fβ scores at the sighting based on simulations applying varying distance criteria 
to the Knight et al. (1995) rule set to identify unique female grizzly bears with cubs from sightings. 
For each Ntrue level, distance criteria range from 12 to 30 km in 2-km steps (indicated by color 
gradient and arranged from left to right). Each boxplot summarizes n = 1,000 simulated datasets 
based on micro-averaged Fβ scores. 
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Table 5. Mean ( 𝑥̅𝑥 ) and standard deviation ( 𝜎𝜎 ) of the predicted 𝑓𝑓1:𝑓𝑓2 ratios for Ntrue levels of 50, 70, 
and 90 based on simulations (n = 1,000 replicates for each combination of Ntrue level and distance 
criterion) applying varying distance criteria to the Knight et al. (1995) rule set to identify unique 
female grizzly bears with cubs from sightings. True 𝑓𝑓1:𝑓𝑓2 mean ratios were 1.13 (SD = 0.39), 1.12 
(SD = 0.36), and 1.12 (SD = 0.33) for Ntrue of 50, 70, and 90 respectively. Results are shown for 𝑓𝑓1:𝑓𝑓2 
ratios <2 (96% of data). 

Distance criterion (km) 

Ntrue Parameter 12 14 16 18 20 22 24 26 28 30 

50 
𝑥̅𝑥 1.49 1.33 1.22 1.15 1.10 1.04 1.01 0.97 0.98 0.95 

𝜎𝜎 0.50 0.48 0.47 0.48 0.49 0.46 0.47 0.45 0.49 0.48 

70 
𝑥̅𝑥 1.40 1.25 1.12 1.06 1.00 0.94 0.91 0.89 0.89 0.88 

𝜎𝜎 0.45 0.42 0.39 0.40 0.41 0.40 0.40 0.43 0.47 0.48 

90 
𝑥̅𝑥 1.34 1.20 1.07 1.00 0.96 0.90 0.88 0.85 0.85 0.82 

𝜎𝜎 0.38 0.36 0.33 0.35 0.36 0.34 0.37 0.37 0.42 0.38 
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Fig. 7. Boxplots of bias (predicted−simulated; expressed as number of females with cubs) in Chao2 
2 − 𝑓𝑓1)adjustment �(𝑓𝑓1 � at the sighting level for all distance criteria and Ntrue levels based on 

2(𝑓𝑓2 + 1) 
simulations applying varying distance criteria to the Knight et al. (1995) rule set to identify unique 
female grizzly bears with cubs from sightings. For each Ntrue level, the distance criteria range from 
12 to 30 km in 2-km steps (indicated by color gradient and arranged from left to right). Each 
boxplot summarizes n = 1,000 simulated datasets. 
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Correlations between the bias in m and the bias in Chao2 adjustment were moderate 

(rs = 0.44–0.70) but strengthened with increasing numbers of simulated females with cubs 

(Fig. 8). Scatterplot patterns indicated the relationship between bias in m and the Chao2 

adjustment were similar across different distance criteria within levels of Ntrue. However, 

distance criteria in the 12- to 16-km range best minimized bias of both m and the Chao2 

adjustment (Fig. 8). The range of bias in the Chao2 adjustment for relatively unbiased 

ranges of m highlights the additional challenge of simultaneously estimating the f1 and f2 

sighting frequencies compared with only m. For example, for distances of 12 to 16 km, even 

when m is predicted with reasonable accuracy (e.g., within ±2 females with cubs of the true 

value), although mean bias of f1 and f2 sighting frequencies is low, individual replicates 

varied widely, from −10 to +13 for f1 and −17 to 14 for f2 (Fig. 9). These biases are 

negatively correlated, and overestimation of f1 tends to correspond to underestimates of f2 

and a positive bias in the adjustment component of NChao2, whereas underestimation of f1 

tends to correspond to overestimation of f2 and a negative bias in the adjustment 

component of NChao2 (Fig. 9). 

Despite the challenges of simultaneously reducing bias of m, f1, and f2 estimates at 

smaller distance criteria, the improvements relative to the 30-km rule set are substantial 

and important to recognize. For example, even at the lowest Ntrue level of 50, where the 30-

km distance criterion performed best, differences between 30 and 16 km were large. Mean 

bias of m, f1, and f2 using the 16-km distance criterion were -0.612, -0.082, and -0.348 

respectively, but for the 30-km criterion were -11.62, -8.67, and -5.25, respectively. 

These results confirm those of Schwartz et al. (2008) regarding the sensitivity of 

bias to changes in overall density of sightings (i.e., sightings/true females, or n/N ratios). 

Negative bias in both m and the Chao2 adjustment decreased with increasing n/N ratios 

(Fig. 10). The proportion of the overall Chao2 estimate accounted for by the Chao2 

adjustment (versus m) increased with decreasing distance criteria at all levels of Ntrue 

(Table 6). This was expected, as reducing distance criteria, on average increases both 𝑓𝑓1:𝑓𝑓2 

and the proportion of total sightings that are either 𝑓𝑓1 or 𝑓𝑓2 (Table 6). Post-hoc regressions 

of Chao2 adjustments ~𝑓𝑓1:𝑓𝑓2 ratio for all distance criteria × Ntrue combinations confirm this, 
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Fig. 8. Relationships between bias (expressed as number of unique females with cubs) in the 
parameter m and bias in the Chao2 adjustment (i.e., NChao2 − m) of the estimator based on 
simulations (n = 1,000 replicates for each combination of distance criterion and Ntrue level), 
applying varying distance criteria to the Knight et al. (1995) rule set to identify unique female 
grizzly bears with cubs. Results are shown for distance criteria of 12, 14, and 16 km (columns) 
within each of 3 simulated levels of true females with cubs (Ntrue = 50, 70, and 90; rows). Blue 
contour lines represent 50th, 75th, and 90th isopleths, respectively. 
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Fig. 9. Bias (predicted − true; expressed as number of females with cubs) in the number of single 
(f1) and double (f2) sightings based on simulations (n = 1,000 replicates for each distance criterion) 
applying the Knight et al. (1995) rule set to identify unique female grizzly bears with cubs, showing 
relationships between over- and underprediction of f1 and f2 when bias in m was +/- 2 of Ntrue, or 
true m. Colors represent 3 different distance criteria (12, 14, and 16 km). In each graph, the 
distance of the small, transparent circles to the intersection of the horizontal and vertical dashed 
lines (0, 0; no bias) represents the level of bias in terms of the number of f1 (distance along 
horizontal axis) and f2 (distance along vertical axis) sightings at the replicate level. Solid circles and 
trend lines show average relationships. A) Simulations using Ntrue = 50. B) Simulations using Ntrue = 
70, and C) Simulations using Ntrue = 90. 

30 



 

 
 

 
       

       
    

    
        

    
 

   

 
 
 
 
 
 
 
 
 
 
 
 
  

Fig. 10. Bias (predicted − true; expressed as number of unique females with cubs) in predicted m 
(A) and Chao2 adjustment to m (B) for distance criterion 16 km and Ntrue levels of 50, 60, 70, 80, 
and 90 based on simulations applying the Knight et al. (1995) rule set to identify unique female 
grizzly bears with cubs. The x-axis reflects binned values for n/N ratio with ranges of bins shown in 
parentheses. Within each bin, Ntrue levels increase from left to right (color gradient). Each boxplot 
summarizes n = 1,000 simulated datasets. 
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Table 6.  Mean proportion of Chao2 estimate contained in the Chao2 adjustment (i.e., Chao2 
adjustment/Chao2 estimate) and mean proportion of total sightings that are either 𝑓𝑓1 or 𝑓𝑓2 
sightings for distance criteria of 12 to 30 km and Ntrue levels of 50, 70, and 90 based on simulations 
(n = 1,000 replicates for each combination of distance criterion and Ntrue level) applying the Knight 
et al. (1995) rule set to identify unique female grizzly bears with cubs from sightings. 

Ntrue = 50 Ntrue = 70 Ntrue = 90 

Distance 
criterion 

(km) 

Chao2 
adjustment/ 

Chao2 
estimate 

Proportion 
f1 or f2 

Chao2 
adjustment/ 

Chao2 
estimate 

Proportion 
f1 or f2 

Chao2 
adjustment/ 

Chao2 
estimate 

Proportion 
f1 or f2 

12 0.22 0.72 0.20 0.70 0.19 0.67 
14 0.18 0.68 0.17 0.65 0.16 0.62 
16 0.16 0.65 0.14 0.61 0.13 0.58 
18 0.14 0.62 0.12 0.57 0.11 0.54 
20 0.12 0.59 0.11 0.54 0.10 0.50 
22 0.11 0.56 0.09 0.51 0.08 0.48 
24 0.10 0.54 0.08 0.49 0.08 0.45 
26 0.09 0.52 0.08 0.46 0.07 0.43 
28 0.09 0.50 0.07 0.44 0.06 0.41 
30 0.08 0.48 0.07 0.42 0.06 0.39 
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with the predicted 𝑓𝑓1:𝑓𝑓2 ratio as the main driver of variation in Chao2 adjustment 
(min = 𝑟𝑟2 = 0.79; max = 𝑟𝑟2 = 0.92).𝑁𝑁true = 50; 30 km 𝑁𝑁true = 90; 12 km 

4. DISCUSSION 

In this section of the report, our primary task was to re-assess the Knight et al. 

(1995) rule set used to identify unique females with cubs, which provides the basis for the 

Chao2 estimation technique used to monitor the GYE grizzly bear population. Specifically, 

to increase the accuracy of the estimation approach, we examined alternative distance 

criteria used to differentiate annual sightings of females with cubs into unique individuals. 

Using  location data from radio-marked females with cubs, we evaluated alternative 

distance criteria by simulating scenarios with varying numbers of true females with cubs 

and sightings. These simulations indicated that distance criteria <30 km increased 

classification accuracy and reduced bias associated with m and the Chao2 adjustment to m. 

Top-performing distance criteria varied with the number of unique females with cubs 

being simulated (Ntrue), the number of observations (n), and their ratio (n/Ntrue). Distance 

criteria in the range of 12–16 km minimized bias and maximized classification performance 

at the unique ID and sighting levels under all simulation scenarios. Selecting a single 

optimal distance criterion from within the 12–16 km range requires a number of 

considerations, as outlined below. 

To select the optimal distance criterion, we concentrated on reducing 

underestimation bias while limiting the risk of overestimation. We focused our insights on 

Ntrue levels of 60 and 70 unique females with cubs because empirical estimates of m (30-km 

criterion) and total observations for the period 2001–2019, when linked to simulation 

results, suggest this range is most relevant to contemporary conditions in the GYE (see 

Appendix B). Simulations show the 16-km distance criteria is relatively unbiased with low 

risk of overestimation. On average, use of the 16-km criterion underestimated m by –3.9 

(Ntrue = 60) to –8.3 (Ntrue = 70) females, and overestimated m by more than 5% in only 3% 

(Ntrue = 60) and 0% (Ntrue = 70) of simulations. Although the 14-km distance criterion is less 

biased on average, it has higher proportions of simulations with >5% bias (Table 7A). 

The Chao2 adjustment to m was also relatively unbiased at the 16-km distance 

criterion, under the assumption that the true classification (simulated sightings) produced 
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Table 7.  Top-ranking distance criteria (12–16 km) and baseline 30-km distance criterion bias 
components for Ntrue = 60 and 70 female grizzly bears with cubs, and total observations within the 
empirical range of n ≤ 165. Results are based on simulations (n = 1,000 replicates for each 
combination of distance criterion and Ntrue level) applying varying distance criteria to the Knight et 
al. (1995) rule set to identify unique females with cubs from sightings. A) m bias, and proportion of 
simulations >+5% and >+10% of Ntrue. B) Chao2 adjustment bias, and proportion of simulations 
>+5% and >+10% of mean known Chao2 adjustment (simulation estimate). C) Chao2 bias, and 
proportion of simulations >+5% and >+10% of mean known Chao2 (simulation estimate). The 5% 
adjustment of the known Chao2 was approximately 3.6 (Ntrue = 60) and 4.4 (Ntrue = 70). 

A) m bias 

Distance criterion Ntrue Mean bias Proportion 
bias >+5% Ntrue 

Proportion 
bias >+10% Ntrue 

12 
60 3.7 0.53 0.30 
70 0.4 0.21 0.04 

14 
60 –0.4 0.19 0.04 
70 –4.3 0.03 0 

16 
60 –3.9 0.03 0 
70 –8.3 0 0 

30 
60 –16.9 0 0 
70 –23.4 0 0 

B) Chao2 adjustment bias 

Distance criterion Ntrue Mean bias Proportion 
bias >+5% Ntrue 

Proportion 
bias >+10% Ntrue 

12 
60 4.6 0.60 0.39 
70 1.9 0.41 0.23 

14 
60 0.3 0.35 0.14 
70 –3.1 0.18 0.06 

16 
60 –3.0 0.14 0.04 
70 –7.0 0.08 0.01 

30 
60 –9.6 0 0 
70 –14.5 0 0 

C) Chao2 bias 

Distance criterion Ntrue Mean bias Proportion 
bias >+5% Ntrue 

Proportion 
bias >+10% Ntrue 

12 
60 8.3 0.69 0.59 
70 2.3 0.48 0.31 

14 
60 –0.2 0.39 0.24 
70 –7.4 0.12 0.05 

16 
60 –6.8 0.12 0.04 
70 –15.2 0.03 0 

30 
60 –26.5 0 0 
70 –37.9 0 0 

34 



 

 
 

  

   

    

 

    

    

   

    

 

  

    

      

 

  

  

 

 

  

  

    

  

  

 

 
  

the correct NChao2 to account for females not seen (Keating et al. 2002, Cherry et al. 2007, 

Schwartz et al. 2008). Using the benchmark of 5% of the mean simulated Chao2 estimates, 

the proportion of simulated Chao2 adjustments based on the 16-km distance criterion 

exceeded this benchmark in fewer than 14% (Ntrue = 60) and 8% (Ntrue = 70) of simulations 

(Table 7B). 

Finally, the combined estimation bias of m and the known Chao2 adjustment 

averaged –6.8 (Ntrue = 60) and –15.2 (Ntrue = 70) using the 16-km distance criterion. These 

represent 26 and 40% reductions in the Chao2 bias compared with the 30-km rule set of 

–26.5 (Ntrue = 60) and –37. 9 (Ntrue = 70), respectively. When total annual sightings were 

restricted to the empirical range (n < 165), the 16-km based Chao2 estimates remained 

conservative, with biases exceeding the 5% benchmark (+3.6 and +4.4) in fewer than 12% 

(Ntrue = 60) and 3% (Ntrue = 70) of simulations (Table 7C). We reiterate that the use of 

“known NChao2” relates to calculations using simulated m, f1, and f2 values, and not an actual 

measurement of the number of females with cubs in the population that are not seen, 

which we could not simulate. 

Higher numbers of females with cubs may occur in the future, and we expect this 

would result in more annual sightings. Such a change would be gradual and become 

apparent in the monitoring data. Under such conditions, it may be necessary to reevaluate 

whether a shift in the optimal distance criterion is warranted. However, under current 

sampling regimes our simulations indicate the 16-km distance criterion provides a 

relatively unbiased estimate of females with cubs while reducing risk of overestimation. To 

better understand the implications of an alternate distance criterion, we applied the 30-

and 16-km criteria to the empirical data of sightings of females with cubs for the period 

1995–2019 in section V (Empirical Application). 
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SECTION III – GENERALIZED ADDITIVE MODELS AS AN ALTERNATIVE TO 

MODEL AVERAGING 

1. GENERALIZED ADDITIVE MODELS 

Generalized Additive Models (hereafter GAMs; Hastie and Tibshirani 1986, 1990; 

Wood 2017) are semi-parametric extensions of generalized linear models (GLMs; 

McCullagh and Nelder 1989) and are one of the most popular and powerful modeling tools 

currently in use by ecologists (Pedersen et al. 2019). GAMs are often described as “data-

driven” rather than “model-driven” because data determine the relationship between 

response and predictor variables rather than an assumed functional relationship (Guisan et 

al. 2002). Whereas linear models relate the mean of the response to a linear combination of 

predictor variables, GAMs describe these relationships via ‘smoothed’ functions, whose 

shape need not be known a priori. As extensions of GLMs, GAMs have the desirable 

properties of linear models, but are more flexible, easier to interpret, and excel when 

relationships are non-linear and non-monotonic (Guisan et al. 2002, Shalizi 2019). 

Here, we provide brief background information on GAMs relevant to the applied 

setting of a wildlife monitoring program using annual count data (i.e., female grizzly bears 

with cubs in the GYE). Trend analyses for the GYE grizzly bear population do not include 

analyses of multiple covariates, and therefore we limit our discussion of GAMs to the 

univariate setting (i.e., count ~ year), emphasizing ease of use and interpretation compared 

with current trend monitoring. We use example data to explain GAMs, the rationale of the 

proposed method, and to illustrate how GAMs can enhance inference. We designed these 

datasets to demonstrate potential scenarios of population change relevant to the GYE 

grizzly bear monitoring program, so they are hypothetical and should not be used for 

biological interpretations. 

2. GENERALIZED ADDITIVE MODELS AS EXTENSIONS OF LINEAR MODELS 

Application of GAMs is most easily understood in terms of differences and 

similarities compared with linear models and the current smoothing approach used by the 

IGBST in the monitoring program, i.e., model averaging. A linear regression model to 
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estimate a trend of annual counts (count𝑡𝑡 ) for each year (year𝑡𝑡 ) with 𝑡𝑡 = 1, 2, … , current 

monitoring year is: 

count𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽1year𝑡𝑡 + 𝜀𝜀𝑡𝑡 , 

where 𝛽𝛽0 is a constant, or intercept, and 𝛽𝛽1 is the rate of change, or slope, of the fitted line 

given the data. The GAM version of the above linear model is 

count𝑡𝑡 = 𝛽𝛽0 + 𝑓𝑓(year𝑡𝑡 ) + 𝜀𝜀𝑡𝑡 , 

where 𝑓𝑓(year𝑡𝑡 ) is a smoothing function replacing the linear fixed effect (𝛽𝛽1year𝑡𝑡 ) from the 

previous equation (Simpson 2018). The main challenge when fitting GAMs is achieving the 

optimal degree of smoothness of 𝑓𝑓() to capture the underlying trend without being overly 

sensitive to underlying noise (Jones and Almond 1992). This optimal degree can be 

achieved by incorporating a “wiggliness penalty” into the objective function that is 

minimized during model fitting; we refer to Wood (2017) and Simpson (2018) for further 

details. When applied properly, this penalty serves to avoid model overfitting while still 

allowing the smoother to respond nonlinearly to changes in trend. In fact, the penalization 

process can reduce complexity of the GAM to a linear trend if the data support it. Therefore, 

a GAM can estimate a linear response without making the explicit assumption of linearity a 

priori. When penalization reduces the GAM to a linear model, it can match the results of 

model averaging (i.e., when model support is dominated by the linear model; Fig. 11A). 

Similarly, when data are increasingly supported by the quadratic model, and thus show a 

more curvilinear response, the fit of the 𝑓𝑓(year𝑡𝑡 ) term will be practically identical to the fit 

based on model averaging. Thus, for time series that can be adequately described by a 

combination of linear and quadratic regressions, such as the NChao2 data, the smoothed 

responses of GAMs pose little departure from the fitted results of model averaging (Figs. 

11A and 11B). However, as nonlinear complexity of a time series increases, the ability of 

the smoother term 𝑓𝑓(year𝑡𝑡 ) to accommodate this complexity gives GAMs a substantial 

advantage over model averaging (Figs. 11C and 11D). 

Whereas model averaging could incorporate higher-order polynomials into the 

competitive model suite, such an approach would introduce additional complications, like 

which order of polynomials to include (Bolker 2008, Simpson 2018). It would also increase 

difficulty of interpreting AICc model weights as the number of candidate models increases 
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Fig. 11. Theoretical time series of count data and fitted smooths of female grizzly bears with cubs at 
A) monitoring year 20, B) monitoring year 28, C) monitoring year 39, and D) monitoring year 45. 
Black circles show data from year 1 to the monitoring year and light grey circles show future values 
(not yet observed) for each panel. The grey solid line is a fitted generalized additive model (GAM) 
and the dashed red line is the fitted model-averaged (linear and quadratic models) smooth (AICc 

weight for quadratic = 0.18 [A], 0.76 [B], 1.0 [C], 1.0 [D]). Note the near identical fits of the GAM and 
model-averaged approach in panels A and B, but increasing divergence between the two 
approaches in panels C and D as nonlinear complexity increases. 
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beyond two. GAMs do not suffer from these issues and can handle response patterns of 

varying complexity, ranging from simple linear trends to highly nonlinear patterns within a 

single model structure. This feature is important in wildlife management applications 

because trajectories of animal populations can take many different forms and are often 

triggers for changes in management strategies. Therefore, the flexible model structure of 

GAMs provides the basis for a more robust population monitoring system and science-

based decision-making. 

3. MODEL INTERPRETATION 

The main difference in model interpretation between simple linear models and their 

GAM equivalent is shifting from a single parameter value to a continuous function that 

cannot be expressed as a single number. Because 𝑓𝑓(year𝑡𝑡 ) is a function, it cannot be 

expressed in the convenient way of a constant slope estimate (e.g., 𝛽𝛽1). Therefore, GAMs 

rely to a large extent on visual interpretation of the fitted smooth and its associated 

uncertainty, which are easily expressed in terms of the partial response function 𝑓𝑓() or 

predicted values for the fitted response. From a practical application perspective, a fitted 

GAM is not different from that of model averaging: both involve interpreting a best-fit 

prediction and a 1 − α confidence interval as a measure of uncertainty. Furthermore, other 

aspects of model inference, such as relative changes in trend, are simplified under the GAM 

framework and, unlike model-averaging, GAMs provide model-level summaries including 

estimated degree of freedom (an index of smoother complexity), significance test for model 

terms, adjusted R2, deviance explained, and standardized model diagnostics. 

First Derivatives 

Considering the example time series shown in Fig. 11A (year𝑡𝑡 = 20), where the GLM 

(count𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽1year𝑡𝑡 + 𝜀𝜀𝑡𝑡 ) and GAM (count𝑡𝑡 = 𝛽𝛽0 + 𝑓𝑓(year𝑡𝑡 ) + 𝜀𝜀𝑡𝑡 ) have nearly 

identical fits, one advantage of the univariate linear model is the clarity of the slope 

estimate for the fitted line: 𝛽𝛽1 = 2.456. As a slope, 𝛽̂𝛽1 is the estimated change in 𝑦𝑦 (count) 

over the change in 𝑥𝑥 (year) and is the rate of change of the fitted linear trend with respect 
∆𝑦𝑦 to x: 𝛽̂𝛽 = . Large values of ∆x and ∆y reflect an average rate of change, but as ∆x and ∆y1 ∆𝑥𝑥 
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become increasingly small, i.e., approaching 0, we begin to measure the instanteous rate of 

change, hereafter refered to as the first derivative, or 𝑓𝑓′(𝑥𝑥). Recognizing this equivalency in 

terminology between 𝛽𝛽 and 𝑓𝑓′ values, and conceptualizing parameter estimates as first 

derivatives, is important because it facilitates interpreting 𝛽𝛽 values not as scalar terms, but 

as continuous functions describing the change in count with changing year. For univariate 

linear models, this equivalency is trivial because the slope is constant and 𝑓𝑓′(𝑥𝑥) is the same 

across years. However, for nonlinear responses, 𝑓𝑓′(𝑥𝑥) can change along the gradient of a 

covariate, and therefore provides a continuous measure of (instantaneous) slope. 

Calculating derivatives for GAM responses is not easily available analytically, but can be 

approximated using the finite difference method (Simpson 2018). 

Analytical Tools 

Beyond the ability to fit more complex trends in Chao2 estimates than model 

averaging, GAMs provide additional analytical tools to inform decision making. First, it 

provides a continuous estimate (with uncertainty) describing how the smoothed Chao2 

estimate changes over time. Thus, for any given monitoring year, instead of inferring 

changes in trend from changes in AICc weights, i.e., model averaging, GAMs provide a more 

direct and interpretable estimate of changes in trend. Furthermore, interpretation of the 

first derivate can be restricted to the monitoring year the same way smoothed estimates 

are, whereas AICc weights are based on the entire time series of Chao2 estimates. Second, 

GAMs offer access to the powerful tool of posterior simulation (Simpson 2018), providing 

additional insights into parameter uncertainty. This approach allows the uncertainty in 

parameter values to be represented as a probability distribution whereby parameter 

values that are more consistent with the data have higher probabilities than those less 

consistent, providing a more complete picture of estimated uncertainty given the data 

(Albers et al. 2018, Kruschke 2018; see Appendix C for details on posterior simulation). 

Although consistent with confidence intervals, probability distributions go beyond the 

concept of being “inside” or “outside” an interval and provide a more transparent picture of 

differences in certainty within the confidence interval. Moreover, their continuous nature 

allows probabilistic statements, which can provide a more intuitive interpretation of 

estimates and their associated uncertainty (Hespanhol et al. 2019; Fig. 12). 

40 



 

 
 

 

 

      
    

  
   

 
    

   
       

    
  

    
 

     
 
  

 
 

  

Fig. 12. A) Hypothetical data (grey circles connected by dashed line) and fitted generalized additive 
model (GAM; solid black line) with 95% confidence intervals (error bars) and posterior simulation 
fits (n = 1,000; thin blue lines) of the number of female grizzly bears with cubs over 30 years. 
Simulations show the density of posterior fits by intensity of blue lines. B) vertical bar and point 
show the fitted estimate and 95% CI for year 30. The distribution to the right shows plausible 
estimates of smoothed values consistent with the fitted model in A (posterior simulation, n = 1,000) 
for model year 30 with color indicating quantile. We note the following key points regarding 
inference for model year 30: (1) the median, 2.5th and 97.5th quantiles (i.e., 95% of data) of the 
distribution are equivalent to point and tails of the 95% confidence interval; (2) inference based on 
the confidence interval (significance test) is restricted to being inside or outside the tails (e.g., 65), 
whereas the distributional representation provides the same information but allows for 
probabilistic statements in reference to threshold values. For example, although the confidence 
interval provides no statistical evidence that the point estimate is significantly greater than a 
reference value of 65, approximately 90% of the posterior simulations were greater than this value, 
providing substantial statistical support for the interpretation that the number of females with cubs 
in year 30 is greater than 65. 
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The approach can be applied to the smoothed GAM estimates (predicted values) and first 

derivatives (rate of change parameter) and thus serves as a unifying framework for 

additional model inference. 

Monitoring Changes in Trend over Time 

We approached trend monitoring using the first derivative posterior distributions of 

fitted GAMs with the primary purpose to better inform decision making. Interpretation 

focuses not only on model outputs for a given monitoring year, but also their relation to 

outputs of recent years. To quantify the ability to detect change, we used the significance of 

the first derivative estimate, defined as the confidence intervals not containing zero. Harris 

et al. (2007) selected the use of AICc weights rather than hypothesis tests on parameter 

estimates because of low statistical power associated with the high annual variation in the 

Chao2 time series. This conclusion has not changed and determining significance based on 

α = 0.05 may be too restrictive in applied management situations. Therefore, we optimized 

the use of (1 − α) confidence intervals greater than α = 0.05 to increase power of detecting 

a change event, while still producing an acceptable false positive rate. First derivative 

confidence intervals were calculated using varying α levels from 0.05 to 0.20, and we 

quantified the false-detection rate under the control simulations (n = 1,000) where the 

deterministic Chao2 value did not change over time. 

Using the optimized α-level of 0.15 (see Section IV), we calculated the first year after 

the simulated decline where confidence intervals for the first derivative did not overlap 

zero. We recorded the duration of the detection event as the number of consecutive years 

in this state once detected and the year and magnitude of maximum decline. To provide 

managers with additional tools for interpreting slope dynamics, we used the proportion of 

the posterior distribution less than zero (probability of decline; pd) to capture shifts not 

accounted for by the confidence interval significance tests. Relative changes in pd from year 

to year provide a straightforward interpretation of increasing or decreasing rates of change 

and relevant measures of early warning and recovery. For example, first derivates may be 

significantly less than zero, but trending back towards non-negative values (Fig. 13). 
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Fig. 13. A) Annual fitted smooth GAM estimates and ~95% confidence intervals for a 
simulated population of female grizzly bears with cubs exhibiting a trajectory of stable to 
decline and returning to stable. Dashed line indicates the deterministic trend (simulated 
Chao2 values not shown). Vertical dashed lines show the start and end of the decline period 
(years 31–40). B) First derivative estimates of fitted GAM (same input data as panel A) and 
85% confidence intervals (based on adjusted α-level of 0.15 producing adequate false 
positive rate in control simulations; see Section IV for details). Color gradient indicates the 
proportion of the posterior distribution <0 (i.e., declining). First significant decline 
detection occurs in year 36 and lasts through year 43. Sustained relative changes in pd 
(probability of decline) suggest an early warning of change in year 35 and a change in trend 
after year 41, with sustained reduction in slopes. Interpretation must account for the fact 
that each year’s estimates do not contain future data (i.e., analyses are not retrospective). 
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4. SUMMARY 

Fitting GAMs to grizzly bear count data and basing trend inference on the 

continuous rate of change based on the first derivative estimate provides a flexible means 

of overcoming the limitations of model averaging outlined in Section I, without deviating 

from the original intentions of model averaging. From a statistical standpoint, GAMs 

provide more flexibility to accommodate, identify, and interpret any future changes in 

population size. This addresses a key limitation of the model-averaging approach, which 

was only designed to detect a slowing of population growth. Our proposed alternative to 

assess trend through GAM first derivatives relies on a direct measure of the fitted model’s 

rate of change, which is invariant to trend patterns. Furthermore, whereas the model-

averaging approach relies on data from the entire time series, first derivatives are 

continuous, and therefore inference can be focused on any portion of the time period, 

including recent time periods that are likely more relevant for decision making. Although it 

requires a conceptual shift, application of GAMs, first derivatives, and inferential tools such 

as the probability of decline (pd) improve transparency and communication of model 

outputs. 

Finally, under this proposed framework there is a clear separation between the 

scientific product of trend assessment (e.g., 1 − α confidence interval, pd threshold) and 

policy-based management objectives (Wagner 2013). We do not present specific threshold 

criteria or management actions, which are outside IGBST’s monitoring and science support 

role (van Manen et al. 2014). However, in proposing application of the methodology, we 

recognize the need to aid in the development of threshold criteria such as first derivative 

confidence interval size (α-level) and the proportion of posterior distributions less or 

greater than zero that can be used as guidance for assessing potential revision of the 

criteria established in the 2016 Conservation Strategy. In Section IV, we use the methods 

proposed here with simulated population time series to provide this guidance. 
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SECTION IV – EVALUATING GAM PERFORMANCE WITH SIMULATED DATA 

1. METHODS 

Simulation Framework 

We used a simulation framework to create realistic dynamics in trends of annual 

NChao2 estimates. We developed the simulations within the context of a stable population 

experiencing short-term perturbations, followed by a return to stability. We modeled post-

decline responses as a return to stability, but these simulations should not be interpreted 

as a limitation of the models or management responses. We simulated declines by varying 

magnitude and duration, with 3 levels of decline (10, 15, and 20%) and 3 durations (5, 10, 

and 15 years). The combined duration × magnitude effect sizes correspond to constant 

population growth rates (λ) ranging from 0.953 (20% decline over 5 years) to 0.993 (10% 

decline over 15 years). We also included a null scenario of zero growth (λ = 1.0; Table 8). 

Although we only simulated population declines to keep our analyses focused, we note that 

the ability to detect population increases is just as relevant to monitoring of the GYE grizzly 

bear population and important for management decisions. Indeed, because of the flexibility 

of GAMs, model performance would be the same and results would be equally applicable 

for equivalent scenarios of population increase. 

To simulate annual NChao2 values, we added “residual-noise” to the deterministic 

trends (Table 8) intended to mimic process and sampling variance present in observed 

NChao2 estimates. We used the empirical residuals from a regression of NChao2 ~ year from 

2000–2018 data to parameterize residual noise and assumed a relatively stable true 

population during this period with noise equally distributed in positive and negative 

directions. We extracted the residuals from the regression and used the statistical 

properties (e.g., autocorrelation, standard deviation) to simulate an auto-regressive time 

series using the arima.sim() function in program R (R Core Team 2019). We scaled 

simulated residuals by dividing by the deterministic value (mean value of empirical NChao2 

estimates for 2000–2018; NChao2 = 55.8). This allowed us to use the same simulated time 

series of noise for each scenario, regardless of the deterministic values. Scaled residuals 

were then “unscaled” by multiplying by the deterministic time series value and adding it to 

45 



 

 
 

    
 

  
 

   
 

 
 

 
 

 

 
   

 
      

 
     

 
     

 
     

  
     

  
      

  
     

 
     

  
     

 
     

 

  

Table 8. Parameters for simulation scenarios of declines in the number of female grizzly bears with 
cubs with varying magnitude (10, 15, and 20%) and duration (5, 10, and 15 years). Approximate 
mortality and constant population growth (λ) rates corresponding to the combined duration × 
magnitude levels are shown for reference. 

Decline scenario 
Decline 

duration 
(years) 

Decline 
magnitude 

(%) 

Approximate 
mortality 

rate 

Approximate 
lambda (λ) 

Duration = null 
Magnitude = null 0 0 7.6 1.000 

Duration = short 
Magnitude = small 5 20 12.3 0.979 

Duration = short 
Magnitude = medium 5 15 11.1 0.968 

Duration = short 
Magnitude = large 5 10 9.9 0.956 

Duration = medium 
Magnitude = small 10 20 10.2 0.990 

Duration = medium 
Magnitude = medium 10 15 9.4 0.984 

Duration = medium 
Magnitude = large 10 10 8.8 0.978 

Duration = long 
Magnitude = small 15 20 9.2 0.993 

Duration = long 
Magnitude = medium 15 15 8.8 0.989 

Duration = long 
Magnitude = large 15 10 8.4 0.985 
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the deterministic value to create stochastic time series. We simulated 1,000 replicate time 

series for each of 10 scenarios (i.e., 1 null and 9 treatment scenarios), each with a length of 

75 years. This length allowed for stabilization, or “burn-in,” time before the start of the 

decline period, and a post-decline stable period. We started declines in year 31 of the 

simulation. Stochastic noise of the simulated NChao2 values resulted in variation across 

simulations of NChao2 values leading up to the decline period (i.e., sometimes higher than 

deterministic values, sometimes lower), which added a realistic variance component to the 

simulations. To account for the observed increase of the empirical NChao2 estimates for the 

GYE grizzly bear population through the early 2000s (Interagency Grizzly Bear Study Team 

2012), we set the first 10 years of each simulation to be an increasing linear trend, thus 

requiring the GAM models to make an initial “turn” from increasing to stable deterministic 

trends. Only contemporary trends are the target of our GAM application, so we chose a 

generic increase to challenge the model but were less concerned with exactly matching the 

empirical data for these first 10 years of the simulations. 

Model Fitting and Data Structure 

To assess the relationship between year and NChao2 in the GAM framework, we fit a 

single covariate model using the general structure we introduced in Section III: 

count𝑡𝑡 = 𝛽𝛽0 + 𝑓𝑓(year𝑡𝑡 ) + 𝜀𝜀𝑡𝑡 , 

where 𝑓𝑓 is a smooth function of the covariate year. We fit models with the mgcv (Wood 

2004) package in program R. 

We evaluated model performance using raw and 3-year simple moving average (𝑥̅𝑥3) 

of simulated NChao2 values. We chose to include the moving average based on exploratory 

work and previous research showing that any reduction in sampling variance would 

increase power to detect trends (Harris et al. 2007). Use of a 3-year moving average is 

easily understood and provides a modest amount of variance reduction. However, there are 

several important considerations in the use of simple moving averages. First, its use lags 

the data by half the size of the sample window (e.g., 1.5 years in our application), delaying 

the onset of changes in the input signal. However, the reduction in the signal-to-noise ratio 

generally outweighs this lag effect in model performance (see Smoothed Estimates; p. 50). 

Second, moving averages increase autocorrelation in the time series that could lead to 
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overfitting if not accounted for. Accordingly, we modified default GAM parameterization to 

protect against overfitting by upscaling the spline penalization (see Model 

Parameterization). 

To provide a reasonable time-series for fitting models, we began model fitting in 

simulation year 25 with 5 years of pre-impact before deterministic trends started. For each 

simulated monitoring year, we fitted a GAM with NChao2 or its 3-year moving average as the 

response variable and year as the predictor variable. Use of fitted models followed the 

IGBST monitoring protocols of using only the monitoring year, or last year of a fitted model, 

for interpretation and not back-correcting estimates of previous years as time advances 

and more data become available. 

Model Parameterization 

For each monitoring year of a simulation scenario, a GAM was fitted on annual NChao2 

estimates (𝑁𝑁Chao2𝑡𝑡 
) or 3-year moving averages (𝑁𝑁Chao23𝑡𝑡 

): 

𝑁𝑁Chao2𝑡𝑡 
= 𝛽𝛽0 + 𝑓𝑓(year𝑡𝑡 ) + 𝜀𝜀𝑡𝑡 , 

or 

= 𝛽𝛽0 + 𝑓𝑓(year𝑡𝑡 ) + 𝜀𝜀𝑡𝑡 ,𝑁𝑁Chao23𝑡𝑡 

where 𝑓𝑓 is a smooth function of the covariate year from t = 1 to the current monitoring year 

and 𝜀𝜀𝑡𝑡 is a vector of error terms. To account for the presence of autocorrelation in the data 

and protect against overfitting, we increased the effective degrees of freedom penalty by 

30% (𝛾𝛾 = 1.3). This increased the “penalty” per increment in the degrees of freedom, 

producing a smoother fit (Kim and Gu 2004; Wood 2006, 2017) and resulted in a 

reasonable balance of overfitting protection while still allowing the smoother to respond 

nonlinearly to changes in trend. Failure to account for such dependencies in the NChao2 

values could lead to overly complex model fitting and a greater probability of false positive 

results (Simpson 2018). Following the suggestions of Wood (2011) and Simpson (2019), 

we used restricted maximum likelihood (REML) for parameter estimation. We set the 

smoother function to use univariate penalized cubic regression splines (Wood et al. 2017). 
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Model Outputs and Inference 

For each monitoring year (n = 50) and simulation replicate (n = 1,000) we fitted 

GAMs and used the methods of Simpson (2018) to generate 1,000 posterior simulations of 

smoothed NChao2 estimates and first derivates 𝑓𝑓′ (year𝑡𝑡 ) as outlined in Appendix C. 

Posterior distributions were extracted and stored for fitted model estimates and first 

derivatives, or slopes, for each monitoring year. We used the variation of estimated slopes 

from the control (no decline) scenario simulations to optimize the α-level based on rates of 

false-positive events, defined by first derivatives being significantly different from zero 

(see Section III). 

We calculated model bias as the mean absolute error of smoothed estimates (i.e., 

predicted GAM values) for each monitoring year at the replicate level. We selected mean 

absolute error over the more conventional root mean squared error because it retains the 

directionality of bias (positive versus negative). We calculated this metric as follows: 

mean absolute error𝑡𝑡 = fitted 𝑁𝑁Chao2𝑡𝑡 
− deterministic 𝑁𝑁Chao2𝑡𝑡 

, 

where fitted 𝑁𝑁Chao2𝑡𝑡 
and deterministic 𝑁𝑁Chao2𝑡𝑡 

are the median of the smoothed NChao2 

posterior distribution and the simulated deterministic NChao2 values, respectively, 

associated with year t. We evaluated the ability of the models to assess trend dynamics in 

two ways. First, the proportion of the posterior distribution of the GAM first derivative 

(𝑓𝑓′(year)) that is less than 0 (pd; section III) serves as a metric of trend existence, 

directionality, and magnitude. Conceptually, the role of the pd index is equivalent to the 

current use of AICc weights by alerting biologists to a possible change in system state 

(Harris et al. 2007). However, unlike AICc weights, pd is a probabilistic statement 

incorporating estimate uncertainty, which can be easily interpreted. Second, we assessed if 

the (1 − α) confidence intervals of the fitted GAM first derivative contained the 

deterministic slope value of zero (i.e., no change). 

Quantifying results across replications is challenging because measures of central 

tendency are relevant to the annual and replicate level. At the annual level, results reflect 

the average dynamics for a given year but do not account for time-dependency present 

within a time series of a single replicate. Therefore, we also include replicate-level results, 

explicitly accounting for the time dependency of each entire time series by using an 
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indicator variable for “trend state.” We assigned a state of decline for years with first 

derivatives different from zero, representing support for a statistically significant decline, 

and a state of no decline for years when the confidence interval contained 0. Contiguous 

years of the same state were considered belonging to the same event, allowing reporting of 

year of event change and duration (e.g., duration of decline). Together, the pd, point 

estimate, and state variables indicating decline or no decline provide a comprehensive set 

of tools for interpreting and communicating NChao2 trends. For example, when confidence 

intervals indicate a slope that is significantly different from 0, the relative differences in pd 

and slope estimates can indicate more detailed temporal dynamics in trend. It is easy to 

infer if the current years estimate is past the peak of a decline, and if relative changes in pd 

and slope estimates reflect a trend returning to non-significant slopes (Fig. 13B; years 41– 

47). 

2. RESULTS 

Smoothed Estimates 

Monitoring year estimates for the 𝑁𝑁Chao23𝑡𝑡 
model under the null model scenario (i.e., 

no simulated decline) were relatively unbiased, with over 85% of monitoring years (n = 

50,000) within 2 NChao2 units from the deterministic, or true, NChao2 value 

(mean absolute error = 0.029; 𝜎𝜎 = 1.33 ). The 𝑁𝑁Chao2𝑡𝑡 
model showed a slight positive bias 

under the null model scenario (mean absolute error = 0.484, 𝜎𝜎 = 1.33). As expected, these 

differences occurred mostly during the pre-impact phase and were associated with larger 

lag effects due to higher variance in the annual 𝑁𝑁Chao2𝑡𝑡 
values subsequent to the initial 

increase prior to stabilization. For the 9 treatment scenarios, the degree and dynamics of 

the fitted bias varied as a function of the interaction of effect size and duration. General 

patterns in bias reflected the lag time required for models to distinguish declines from 

annual variation in NChao2. Smoothed estimates during the decline were positively biased 

and increased with the size and speed of simulated declines (Table 9). Similarly, during the 

post-decline stabilization period, models showed a transition to a period of negative bias as 

models responded to the abrupt change from decline to stabilization. Compared with the 

𝑁𝑁Chao2𝑡𝑡 
models, variance reduction associated with the 3-year moving averages of the 
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Table 9. Bias associated with smoothed estimates using generalized additive models of simulated 
time series of estimates of female grizzly bears with cubs (NChao2), based on 9 scenarios of 
population decline with varying levels of duration and magnitude for 3-year simple moving 
averages (𝑁𝑁Chao23𝑡𝑡 

). Results reflect the period of impact (decline). Null model results are presented 

for reference. We simulated 1,000 replicate time series for each scenario, each with a length of 75 
years and with population declines starting in year 31 of the decline simulations. 

Model 
Decline 

duration 
(years) 

Decline 
magnitude 

(%) 

Approximate 
λ 

Mean 
bias 

Standard 
deviation 

bias 

0.025 
quantile 

0.975 
quantile 

Null 0 0 1.0 0.03 1.33 −2.51 2.55 

𝑁𝑁Chao23𝑡𝑡 
15 20 0.985 1.18 1.44 −1.64 3.98 

𝑁𝑁Chao23𝑡𝑡 
15 15 0.989 0.92 1.42 −1.87 3.65 

𝑁𝑁Chao23𝑡𝑡 
15 10 0.993 0.64 1.40 −2.11 3.33 

𝑁𝑁Chao23𝑡𝑡 
10 20 0.978 1.91 1.56 −1.18 4.84 

𝑁𝑁Chao23𝑡𝑡 
10 15 0.984 1.50 1.50 −1.49 4.31 

𝑁𝑁Chao23𝑡𝑡 
10 10 0.990 1.05 1.46 −1.84 3.81 

𝑁𝑁Chao23𝑡𝑡 
5 20 0.956 3.73 1.83 0.00 7.04 

𝑁𝑁Chao23𝑡𝑡 
5 15 0.968 2.89 1.71 −0.58 5.97 

𝑁𝑁Chao23𝑡𝑡 
5 10 0.979 2.00 1.59 −1.20 4.91 
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models resulted in less bias during impact phases and faster returns during the 𝑁𝑁Chao23𝑡𝑡 

subsequent stable period with bias levels equivalent to the null model scenario (Fig. 14). 

Trend Detection 

We provide detailed results of each step of the trend detection procedure to help 

interpretation. Because we assessed 10 scenarios, we restricted results to the 

model because of its smaller bias compared with the 𝑁𝑁Chao2𝑡𝑡 
model. 𝑁𝑁Chao23𝑡𝑡 

Optimizing the α-Level.—At the annual level, the null treatment (no change in 

deterministic trend) rate of false-positive significant slopes (increasing or declining trend) 

ranged from 0.01 at α = 0.05 to 0.06 at α = 0.20. These errors reflect the relatively low 

probability of false detections for a given year over the entire simulated time series. False-

positive rates at the replicate level captured if there was ever a false detection during the 

entire time span (years 30–75) and consider events as blocks of consecutive years in the 

same state (i.e., detection or no detection). Replicate-level false positive rates were 0.05, 

15.5, 32.4, and 48.8 at α-levels of 0.05, 0.10, 0.15, and 0.20 respectively. Replicate-level 

rates must be carefully interpreted in relation to the simulated time period. For example, 

even at the highest α-level of 0.20, although 48.8% of null model simulations having a false 

positive event seems high, when accounting for the 45-year period, and all false-positive 

events, the expected frequency of a false positive event is low, only once every 65 years. 

The year of first detection of false-positive change events varied widely across the 

simulation time series, regardless of α-level (𝜎𝜎𝛼𝛼 = 0.05 = 12.4; 𝜎𝜎𝛼𝛼 = 0.20 = 12.5) and with 

relatively short mean durations (2.7 to 3.0 years) reflecting a random and transient 

dynamic. 

Ultimately, the α-level is a tunable parameter, reflecting a manager’s comfort 

balancing “costs” associated with falsely signifying change versus failing to detect change. 

Given the short-term nature of the false positive events, we believe these costs are 

relatively low compared with those of failing to detect a change that is occurring. 

Therefore, we evaluated GAM change detection using α = 0.15, which results in an annual 

false-positive rate of 0.039 and at the replicate-level an expected false event detection 

frequency of once every 109 years. 
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Fig. 14. Mean absolute error (MAE) for 𝑁𝑁Chao2𝑡𝑡 
(annual; blue) and 𝑁𝑁Chao23𝑡𝑡 

(3-year moving average; 
red) fitted estimates of female grizzly bears with cubs as a function of simulation year. Columns 
show magnitude of the impact (large = 20%, medium = 15%, small = 10% decline) and rows show 
duration of impact period (long = 15 years, medium = 10 years, short = 5 years). Dashed vertical 
lines indicate the start and end of the impact period and dashed horizontal line indicates reference 
bias of 0. 
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Treatment Scenarios: Probability of Decline (pd).—First derivative posterior 

distributions varied with modeled growth rate and duration of the simulated impact 

period. For all scenarios, the annual probability of decline (pd) increased within the first 2 

to 3 years of the start of a decline, indicating that existence of a declining trend was rapidly 

assessed. Temporal dynamics based on median pd values closely tracked the different 

scenarios, with shorter durations and larger magnitudes resulting in faster shifts and larger 

probabilities of decline. Peak values for annual medians ranged from 0.845 (decline = 10% 

over 15 yrs; λ = 0.993) to 0.999 (decline = 20% over 5 yrs; λ = 0.956). On average, median 

pd values reached maximum levels ≤3 years of the end of the decline period for all but the 

short (5 years) durations of decline, which reached maximum values within the first two 

years after the decline. This pattern reflects that the short-term effects post decline were 

more pronounced with shorter impact durations, as it is difficult for models to fully capture 

these rapid dynamics. These patterns are relevant as temporal patterns in pd shifts provide 

important information for interpreting short-term dynamics, particularly initial shifts from 

stable periods and attenuation after peaks (Fig. 15). 

Treatment Scenarios: Support for Slope Significance.—At the annual level, all 

impact scenarios except for the most gradual decline (10% over 15 yrs; λ = 0.993) showed 

support for significant negative slopes when averaged across replicates (Fig. 15). Although 

that scenario lacked power to detect slope significance, it is unlikely that the trends would 

go undetected. For example, during the simulated decline phase, median posterior slope 

estimates were less than the previous year’s estimates during 56% of simulation years, and 

the number of consecutive years under this pattern (current year’s slope < previous year’s 

slope) averaged 4.47 years. When coupled with inference on the probability of decline, pd, 

which averaged 0.72 during the impact period, the temporal trends provide substantial 

inference of changing conditions despite the lack of statistical significance, an important 

feature for applied management. 
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Fig. 15. Trend dynamics for 𝑁𝑁Chao23𝑡𝑡 
first derivative (slope) posterior distributions of number of 

female grizzly bears with cubs, for 9 treatment scenarios. Columns show magnitude of the impact 
(large = 20%, medium = 15%, small = 10% decline) and rows show duration of impact period (long 
= 15 years, medium = 10 years, short = 5 years). Black dashed lines indicate the start and end of the 
simulated decline periods. Density strips associated with each year reflect the distribution of 
posterior medians across replicates (n = 1,000). Width of each density strip reflects the average pd 
value, scaled such that pd = 1.0 is reflected by adjacent years having no space between their density 
strips. Color gradient indicates the proportion of simulations (n =1,000 per scenario) in a decline 
“state” where confidence intervals for ≥2 consecutive years do not contain zero. 
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Treatment Scenarios: Event (Change) Detection.—Whereas annual summaries of 

the pd and support for rate of change significance (i.e., confidence intervals of first 

derivative not containing zero) provide useful measures of central tendency for each model 

year, they do not maintain the time-dependent structure inherent in the model simulations. 

For example, the most gradual decline scenario (10% over 15 yrs; λ = 0.993) did not 

achieve median levels of significance during any year. However, when examining time 

series at the level of individual replicates, 74.6% of simulations showed support for slopes 

significantly different from zero for two consecutive years at some point during the 15-year 

decline. This was a result of support for decline significance being modest (median 

posterior of first detection event = -0.51), short-lived event duration (median duration= 3 

years), and staggered year of first detection (σ = 7.03). Thus, when averaged annually (i.e., 

across replicates for each year) support for significance is lacking. Although this effect is 

less pronounced for other scenarios, we address this overall issue by summarizing results 

at the replicate level using the state variable of decline versus no decline for each year of a 

time series. 

Detection of simulated declines was high, with >99.6% of replicates detecting 

decline events under the medium (10%) and large (15%) decline scenarios. For small 

magnitude decline scenarios (5%), detection probability ranged from 84.7% (15-year 

duration) to 94.7% (5-year duration) of replicates. The mean number of years from decline 

onset to year of first detection ranged from 3.7 (20% decline over 5 years) to 11.1 (10% 

decline over 15 years), and mean duration (range = 3.9–8.8 yrs) was correlated with 

interaction of decline duration × magnitude (Table 10). 

Patterns for detecting the return to stabilization post decline were similar to decline 

detection and symmetrical around the peak support for decline for the 15- and 10-year 

decline scenarios. Five-year scenarios showed slight asymmetry around the peak with a 

longer and more linear return towards practically negligible levels. For all scenarios, 

rebounding trends were evident well before state transition from decline to no decline 

occurred, based on the relative change in pd and sustained increases in the median 

posterior distribution. 
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Table 10. Change detection metrics for 9 scenarios of decline for simulated time series of 
𝑁𝑁Chao2 estimates of female grizzly bears with cubs, based on significance of first derivative of 
generalized additive models and 3-year simple moving averages (𝑁𝑁Chao23𝑡𝑡 

). We simulated 1,000 
replicate time series for each scenario, each with a length of 75 years and with population decline 
starting in year 31 of the simulation; p(detect) is the proportion of simulation with at least 2 
consecutive years of statistically significant first derivatives. Mean and standard deviation for lag to 
detect reflect the number of years post simulation decline before a detection and its variation. Mean 
length of detection events represent the mean number of consecutive years in each event and the 
mean slope estimate gives an indication of effect size. 

Decline 
durationa 

Decline 
magnitudeb p(detect) 

Mean lag to 
detect 

(years) 

Standard 
deviation 

lag to detect 

Mean length 
of detection 

event 
(consecutive 

years in 
detect state) 

Mean slope 
estimate 

(first 
derivative) at 
first detection 

Long Large 1.00 6.91 2.54 8.29 −0.75 

Long Medium 0.99 8.74 3.80 5.76 −0.64 

Long Small 0.85 11.05 5.45 3.88 −0.53 

Medium Large 1.00 5.36 1.71 8.83 −0.92 

Medium Medium 1.00 6.53 2.49 6.76 −0.74 

Medium Small 0.90 8.66 4.51 4.33 −0.60 

Short Large 1.00 3.65 1.09 7.80 −1.21 

Short Medium 1.00 4.36 1.48 6.92 −0.93 

Short Small 0.95 6.02 3.70 4.70 −0.70 

aLong = 15 years, medium = 10 years, short = 5 years. 
bLarge = 20%, medium = 15%, small = 10%. 
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3. DISCUSSION 

Our findings demonstrate that GAMs are a suitable alternative for model-averaging 

procedures currently used by the IGBST to smooth annual variation in population 

estimates and assess changes in population trend based on NChao2 estimates. As a smoother, 

we demonstrated the ability of GAMs to track trends and respond to not only declines, but 

subsequent stabilization of the population. As expected, models showed bias associated 

with periods of change. However, this was not because of an inherent bias of the GAMs, but 

a limitation of high annual variation in NChao2 estimates and only using the monitoring year 

of a fitted model for inference (Harris et al. 2007). Thus, inference is limited by variation 

inherent in the data and statistical advancements alone cannot overcome this limitation. 

The aforementioned biases are inherent in monitoring female grizzly bears with cubs from 

sightings in the GYE, indicating the importance of understanding these biases when 

interpreting model outputs. Biases showed predictable patterns relative to fitted slope 

estimates and duration of declines, which can aid in interpretation of model results. 

Posterior inferences of the first derivative slope estimates were responsive to all decline 

scenarios, and detected change during almost all of 15 and 20% decline scenarios (Table 

10, Fig. 15). For the smallest declines (10%), high detection rates (≥90%; Table 10) were 

achieved within the first few years after the onset of decline for all but the most gradual 

decline (15 yrs), which still had an overall detection rate of 0.85. This lower detection rate 

reflects the challenges of differentiating between high annual variation in NChao2 and 

gradual declines over a longer time period. However, even when significance is not 

achieved, the likelihood of mistaking a gradual trend remains low because temporal 

dynamics between null model simulations of no growth and the most gradual declines 

were fundamentally different. For example, sustained directional trends in pd and first 

derivative point estimates provided clear inference that gradual changes are taking place 

regardless of statistical significance. These patterns would serve as early indications of 

significant future change, or at least increasing evidence of a sustained gradual effect. In 

either case, comparisons of the smoothed NChao2 estimates over relevant time scales would 

allow evaluation whether a meaningful effect had taken place (Fig. 15). These findings 

highlight the value of trend assessment involving the synthesis of a suite of trend detection 
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metrics, rather than the result of a single metric as currently applied with the use of AICc 

weights. 

As with any analysis involving simulations, there are important caveats. First, 

simulations inherently do not encompass all reality, and alternative scenarios may occur 

that we have not modeled. We focused on scenarios that we deemed relevant to managers 

and represent realistic dynamics of changes in population trends. Although actual 

population scenarios will differ, our purpose was to understand the effectiveness of the 

proposed population monitoring tools to capture this range of dynamics. Second, the 

simulations may create a false impression that the proposed monitoring tools are complex 

and difficult to apply. Whereas communicating results across 10 different scenarios (9 

treatment and 1 null) and thousands of replications is challenging, implementation in a 

monitoring program is actually simple. With only a single time series, GAMs are applied as 

proposed here and evaluated on an annual basis as new data are added. We demonstrate 

such an application with empirical data in Section V. 
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SECTION V – EMPIRICAL APPLICATION 

1. INTRODUCTION 

In this section we demonstrate the combined application of using an alternate 

distance criterion (Section II) and replacing model averaging with GAMs for smoothing and 

trend detection (Sections III and IV) using empirical counts of females with cubs. We note 

that the 30-km time series presented here are different from those previously reported by 

the IGBST because 1) in contrast to model averaging starting in 2007, we retrospectively 

fitted GAMs for the entire time period of 1997–2019 and 2) estimates presented here were 

derived solely based on applying the Knight et al. (1995) rule set using the computer 

program from Schwartz et al. (2008), rather than the manual application of the rule set 

deployed historically and combined manual and computer applications since the 

development of the Schwartz et al. (2008) program code. The latter was necessary for 

running the thousands of simulations. Manual application of the rule set typically results in 

higher counts of m because of sighting subtleties that could not be programmed into the 

computer code. Although annual differences between the 2 approaches were usually small 

(average difference of 1.75 unique females with cubs during 1997–2019), higher manual 

counts were more evident in early years of that time period. 

2. Estimates of m and NChao2 

The time series based on estimates of m for the 16-km criterion showed stronger 

positive growth and for a longer time period compared with the 30-km criterion, with the 

growth rate peaking in 2008, and then slowing but with positive growth for the remainder 

of the period (Fig. 16). For NChao2 estimates, the rate of change for the 1997–2019 period 

was positive for both distance criteria, with larger estimates and slightly higher growth 

rates indicated by the first derivative for the 16-km criterion compared with the 30-km 

criterion; growth rates were more similar in recent years (Fig. 17). This mirrors our 

simulation findings that smaller distance criteria resulted in the Chao2-adjustment 

representing a greater proportion of the overall NChao2 estimate: the adjustment represents 

13.0% of the estimate for the 30-km distance criterion, but 26.0% of the estimate for the 
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    16-km distance criterion 30-km distance criterion 

Fig. 16. Estimates of unique female grizzly bears with cubs (m; i.e., not including the Chao2 
adjustment) based on annual sightings in the Greater Yellowstone Ecosystem (Demographic 
Monitoring Area) during 1995–2019, based on application of the Knight et al. (1995) rule set using 
16-km (left panels) and 30-km (right panels) distance criteria. A) and B) Number of observed 
females with cubs (m) using fitted GAM estimates based on 3-year moving averages. Black circles 
show the median and black vertical lines show the upper (0.975) and lower (0.025) quantiles for 
the region containing 95% of posterior simulation values. Raw annual m estimates (red circles 
connected by dashed line) are shown for reference. C) and D) First derivative (rate of change) of m; 
black circles indicate median of posterior distribution and vertical black lines show the upper 
(0.975) and lower (0.025) quantiles for the region containing 95% of posterior simulation values. 
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    16-km distance criterion 30-km distance criterion 

Fig. 17. Estimates of NChao2 derived from the number of unique female grizzly bears with cubs (m; 
see Fig. 16) in the Greater Yellowstone Ecosystem (Demographic Monitoring Area) during 1995– 
2019, based on application of the Knight et al. (1995) rule set using 16-km (left panels) and 30-km 
(right panels) distance criteria. A) and B) Number of estimated females with cubs using fitted GAM 
estimates of 3-year moving averages of NChao2 estimates (𝑁𝑁Chao23𝑡𝑡 

). Black circles show the median 
and black vertical lines show the upper (0.975) and lower (0.025) quantiles for the region 
containing 95% of posterior simulation values. Raw annual NChao2 estimates (red circles connected 
by dashed line) are shown for reference. C) and D) First derivative (rate of change) of NChao2; black 
circles indicate median of posterior distribution and vertical black lines show the upper (0.975) and 
lower (0.025) quantiles for the region containing 95% of posterior simulation values. 
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16-km criterion. This is primarily a function of an increase in f1 frequencies relative to f2 

frequencies when shifting the criterion from 30 to 16 km (Fig. 18). These levels were 

approximately 1.5 times higher than those observed in the simulated datasets (Table 6). 

This finding likely reflects that simulated data based on VHF locations cannot fully capture 

the observation process for unmarked bears, but there is no evidence of bias as a function 

of distance criteria. 

3. DISCUSSION 
Our primary motivation for exploring alternative distance criteria was to obtain 

unbiased estimates of numbers of female grizzly bears with cubs in the GYE. Findings from 

the simulation analyses demonstrate that relatively unbiased estimates of m and NChao2 can 

be obtained by modifying the 30-km distance criterion in the rule set. Within the context of 

current monitoring protocols and effort, and considering the full suite of simulations 

presented in Section II and previous studies, we plan to update our monitoring protocols 

and change the distance criterion in the rule set from its current level of 30 to 16 km. By 

virtue of producing relatively unbiased estimates, time series of m and NChao2 using the 16-

km distance criterion will be more sensitive to true changes compared with estimates 

based on the 30-km criterion that are increasingly constrained as population size increases 

(Figs. 16 and 17; Schwartz et al. 2008). 

In terms of trend detection, our evaluations based on simulated NChao2 time series in 

Section IV and the application to empirical data presented in Figs. 16 and 17 show that 

GAMs effectively address the limitations of model averaging for estimation and trend 

detection of the GYE grizzly bear population. Furthermore, applying GAMs within a more 

robust statistical framework to assess population trend substantially improves our ability 

to monitor the population. This framework not only enhances trend detection but also adds 

an early indication of impending change or return to previous state. Additional advantages 

of this new framework are that it can easily be applied to the entire time series of NChao2 

estimates for the GYE, thus allowing retrospective analysis, and can be applied to future 

monitoring techniques based on any time series of population estimates. 
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Fig. 18. Empirical data (1997–2019) of the annual frequency of unique female grizzly bears with 
cubs with 1 (f1) and 2 (f2) sightings based on application of 16-km (red circle) and 30-km (blue 
circle) distance criteria of the Knight et al. (1995) rule set. Lines connect the two independent 
estimates for the same year (year values not shown). The relatively flat slopes of lines indicate a 
greater increase in f1 frequencies versus f2 frequencies when changing the distance criterion from 
30 to 16 km. 
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There are a number of caveats to these findings. First, we emphasize that our 

conclusions are based on obtaining relatively unbiased average estimates from simulations 

with different levels of known females with cubs (i.e., Ntrue). The empirical data are the 

equivalent of a single simulation run and thus could, by chance, represent a time series 

away from central tendencies. We account for this statistical reality in our 

recommendations of the 16-km distance criterion, but this approach still does not 

guarantee an absence of overestimation during a single year. This potential for 

overestimation is one reason why smoothing of these time series data is important, and 

why we plan to use GAMs and 3-year moving averages. Second, the simulation framework 

was designed to directly compare a true number of “sighted” bears to the estimate of m. 

Unsighted females were not simulated, therefore inferences about NChao2 are based on the 

premise of correctly assigning f1 and f2 sighting frequencies, i.e., the simulated f1 and f2 

counts, correctly captures the Chao2 adjustment (Schwartz et al. 2008, Keating et al. 2002, 

Cherry et al. 2007). Third, similar to the limitations that Schwartz et al. (2008) identified 

regarding their analyses, the sampling frame we generated used data that were not 

specifically collected to evaluate the distance criteria. Although the sampling frame based 

on telemetry and ground sightings was data-driven and based on reasonable assumptions, 

the simulations are only approximations. For example, we had to combine multiple years of 

data to create a sampling frame that allowed adequate “sampling” of annual sightings for 

the simulations and assume it was reflective of how sightings are collected in any given 

year. Although this is a reasonable assumption, it may not be entirely accurate. Finally, we 

focused on the distance criterion in the rule set because of its overarching implications on 

the outcome; however, there are other criteria in the rule set that also play a role, which we 

did not explicitly investigate. 

4. IMPLICATIONS 
There are several important implications associated with implementation of a new 

distance criterion and use of GAM techniques. A primary consideration is that the 16-km 

distance criterion results in total population estimates derived from the Chao2 estimates 

that are greater than those we have reported in the past. While this increase is due to a 
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change in the implementation of the technique, it also more accurately represents the 

number of females with cubs in the GYE grizzly bear population. For example, the estimate 

of 82 females with cubs mentioned in the previous paragraph using the 16-km distance 

criterion is 41% greater than the 2019 model-averaged NChao2 estimate of 58 females with 

cubs based on the 30-km distance criterion in the current rule set (Haroldson et al. 2020). 

Total population estimates derived from the NChao2 estimates would increase accordingly: 

the 2019 estimate of 737 would be the equivalent to a total population size over 1,000. In 

combination with switching from manual- to computer-based application of the Knight et 

al. (1995) rule set, underestimation may also have contributed to an artificial flattening of 

population trend since the early 2000s. Although the IGBST documented slowing of 

population growth based on independent data for vital rates as well (Interagency Grizzly 

Bear Study Team 2012), trend data based on NChao2 estimates and the 30-km distance 

criterion may have overestimated the flattening of the population trajectory (Haroldson et 

al. 2020). 

Implementation of the 16-km distance criterion combined with use of GAM 

techniques would affect some of the population metrics (e.g., annual population size and 

uncertainty, population trend, mortality rates) used to inform management responses. 

Implementation would require relatively minor changes in the monitoring protocols 

described in Appendices B and C of the 2016 Conservation Strategy. Additionally, we note 

that the IGBST has ongoing investigations into the merits of an integrated population 

model (IPM), for which annual Chao2-based estimates are important input data. The IGBST 

plans to continue those investigations using the 16-km distance criterion to derive Chao2 

estimates. 

Finally, we note that the findings from this work emphasize that high inter-annual 

variation of NChao2 estimates constrains population monitoring. Of course, variation over 

time is inherent and expected for any wildlife population. However, variation of NChao2 

estimates is in part driven by substantial sampling variance. Future monitoring efforts 

should strive to adapt monitoring strategies to reduce this source of variation, and the 

IGBST continues to investigate approaches for such improvements. 
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APPENDIX A 
Simulation Data for Testing Model-Averaging Protocol 

Using empirical data from the period of relative stability (2000–2016), we extracted 
2016∑2000 𝑁𝑁Chao2𝑡𝑡 residuals �𝑁𝑁Chao2𝑡𝑡 − � � � as a time series representing an unknown 

𝑛𝑛 

combination of process and sampling variance of the NChao2 estimates. To simulate future 

scenarios, we first standardized the residuals by size estimates and then used a time series 

bootstrap of an autoregressive integrated moving average (ARIMA(1,0,0)) model to create 

new simulated time series of variation. We then added simulated residual time series to 

deterministic scenarios of future growth to create time series of NChao2 estimates with 

variation similar to the empirical data (see section IV.1 for additional simulation details). 

For each simulation replication, we applied the current monitoring protocols, beginning 

with model averaging in 2007 and continuing annually for each monitoring year in the time 

series. To best approximate the true monitoring environment, we used the empirical NChao2 

data for 1983–2019 and simulated NChao2 data for 2020–2041. 
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APPENDIX B 
Linking Empirical and Simulation Data 

We simulated females with cubs ranging from Ntrue = 50 to Ntrue = 90 in steps of 10. 

Our intention was to provide a range of simulated known females with cubs that covers the 

current true number and plausible future values under the assumption of continued 

population growth. Although the true number of females in the population is unknown,   

this broad range of Ntrue values is well supported by empirical data and previous 

simulations (Schwartz et al. 2008, Higgs et al. 2013, Haroldson et al. 2020). Because the 

total number of observation simulated was determined by a randomly selected multiplier 

applied to Ntrue, higher values of Ntrue on average resulted in larger total observations (n). 

This is a reasonable assumption as the observation flights used to monitor females with 

cubs are based on standardized flight time in bear observation units, and the presence of 

more females with cubs would results in a greater number of observations. Therefore, to 

provide additional context for inference relative to contemporary data, we explored total 

sightings of female grizzly bears with cubs matching that of the empirical data for the 

period 2001–2019. 

Based on a changepoint analysis (Killick and Eckley 2014, Killick et al. 2016) of 

estimated females with cubs, we identified 2001 as the optimal breakpoint in the time 

series and thus focused on the empirical data for the 2001–2019 period. For this time 

period, approximately 90% of the distribution of annual total sightings was between 65 

and 160 so we focused on the density distribution within this range of simulated total 

sightings (we excluded 2007 and 2010 as outlier years based on a Rosner’s Test [1983]; 

sightings in both years were abnormally high due to a single roadside bear being observed 

63 and 55 times, respectively). 

Simulation results using the 30-km distance criterion of the Knight et al. (1995) rule 

set indicated underestimation bias in estimates of females with cubs (m) at all 5 levels of 

Ntrue (Fig. 5D, Table B.1). These data indicate a substantial range of bias, varying almost 4-

fold across the simulated range of true females with cubs (e. g. , 𝑥𝑥50(ℎ𝑖𝑖𝑖𝑖ℎ) = 

−9.56; 𝑥𝑥90(ℎ𝑖𝑖𝑖𝑖ℎ) = −37.00). Thus, the degree of underestimation bias using the 30-km 

distance criterion depends on the empirical true number of females with cubs, which is 
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unknown. However, we can gain useful insights by synthesizing information from the union 

of empirical and simulated datasets. 

Empirical estimates of m (i.e., number of unique females with cubs based on 

sightings only; this estimate does not include the Chao2 adjustment) within the 

Demographic Monitoring Area have been stable to slightly increasing since 2001 (Fig. B.1). 

To account for non-normality, and the low outlier year of 2005, we calculated a 10% 

trimmed bootstrap mean and confidence interval (Hall and Padmanabhan 1992) to 

quantify the central region of empirical estimates of m for 2001–2019. The mean value of m 

was 44.2, for which we used a 99% CI (38.5–49.4) to be most conservative. Given the range 

of empirical total sightings and predicted number of females with cubs when using the 

biased 30-km distance criterion, the frequency of simulation predictions within this central 

region of empirical estimates provides insights into the likelihood of the true value of m: for 

the scenario of 60 true females with cubs, 94% of simulation replicates were within this 

range, followed by 70 females with cubs (83%), and 50 females with cubs (61%; Table B.2). 

Scenarios with 80 and 90 females with cubs had much lower proportions of replicates 

within the range of empirical estimates (Table B.2). These findings indicate a realistic true 

estimate of the number of observed females with cubs (m) for the 2001–2019 period, when 

using the 30-km criterion, is most likely in the range of 60–70. We provide this information 

as an additional guide to help distinguish model evaluation for current conditions, as well 

as future conditions under the assumption of continued population growth. 
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Table B.1. Mean and standard deviation of bias in estimated number of female grizzly bears with 
cubs (predicted m − Ntrue) for 5 levels of true number of females with cubs (Ntrue) and applying the 
30-km distance criterion for estimation. We stratified results by equal-interval categorical ranges 
(low, n = 65–96; medium, n = 97–128; and high, n = 129–160) and a pooled (all) category (n = 65– 
160). Sample sizes indicate the number of replicates meeting the total sighting criteria. Total 
simulated sightings (n) were restricted to the range of annual empirical sightings (n = 65–160). 

True number 
of females with 

cubs (Ntrue) 

Range of number 
of sightings (n) 

Sample size 
(replicates)a 

Mean 
m bias 

Standard 
deviation 

m bias 

50 

Low 296 −13.46 2.64 
Medium 417 −11.73 2.62 

High 287 −9.56 2.60 
All 1,000 −11.62 3.01 

60 

Low 33 −20.33 3.15 
Medium 415 −17.92 2.86 

High 354 −15.65 2.85 
All 802 −17.02 3.15 

70 

Low 0 
Medium 163 −25.09 2.87 

High 379 −22.88 3.07 
All 542 −23.55 3.17 

80 

Low 0 
Medium 21 −32.14 2.50 

High 327 −29.68 3.44 
All 348 −29.83 3.44 

90 

Low 0 
Medium 0 

High 111 −37.00 3.57 
All 111 −37.00 3.57 

aAvailable replicates out of 1,000 with total sightings within 90% of the empirical range of sightings (n = 65–160) for the 
period 2001–2019. 
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Fig. B.1. Empirical estimates of unique female grizzly bears with cubs from sightings in the Greater 
Yellowstone Ecosystem for the period 2001–2019, based on the 30-km distance criterion of the 
Knight et al. (1995) rule set. Red and black dashed lines show the 10% trimmed bootstrapped mean 
and 99% confidence interval, respectively. 
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Table B.2. Number of simulation replicates with estimates of number of female grizzly bears with 
cubs within the 99% CI of empirical estimates for the period 2001–2019. 

True 
number of 

females 
with cubs 

(Ntrue) 

Number of 
replicatesa 

Number of 
replicates with 

estimates within 
99% CI of 

empirical data 

Proportion of 
replicates with 

estimates within 
99% CI of 

empirical data 

Minimum 
predicted 
number of 

females with 
cubs 

Maximum 
predicted 
number of 

females with 
cubs 

50 1,000 607 0.61 27 48 
60 802 757 0.94 32 52 
70 542 452 0.83 35 55 
80 348 146 0.42 40 61 
90 111 16 0.14 44 61 

aAvailable replicates out of 1,000 with total annual sightings within 90% of the empirical range of sightings (n = 65–160) 
for the period 2001–2019. 
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Fig. B.2. Simulation results to identify unique female grizzly bears with cubs from sightings using 
the Knight et al. (1995) rule set and the 30-km distance criterion for 5 simulated levels of true 
number of females with cubs (Ntrue = 50, 60, 70, 80, and 90). Solid black circles and lines show 
means and 95% CI for each true level. The diagonal dashed black line shows the unbiased 
relationship between truth and prediction, with regions above indicating overestimation bias and 
regions below indicating underestimation bias. The horizontal red dashed line and 2 black dashed 
lines represent the mean and corresponding 99% CI of empirical estimates of females with cubs for 
the period 2001–2019. Total annual sightings were restricted to 90% of the empirical range (n = 
65–160) for the period 2001–2019. See Fig. 5 of Schwartz et al. (2008) for comparison. 
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APPENDIX C 
Posterior Simulation for Evaluation of GAMs 

We take a Bayesian perspective to enhance inference regarding uncertainty in 

model parameters by positing a distribution of possible parameter values that are 

consistent with a fitted model, but incorporate the uncertainty of the model fit. Parameters 

are modeled as being randomly chosen from this distribution, and given the statistical 

model allows simulations from the distribution 𝛽̂𝛽|𝑌𝑌 (Wood 2017). Referred to as posterior 

inference in the Bayesian literature, this approach allows the uncertainty in parameter 

values to be represented as a probability distribution, or posterior distribution (Simpson 

2018). Parameter values that are more consistent with the data have higher probabilities 

than those less consistent, providing a more complete picture of estimated uncertainty 

given the data (Albers et al. 2018, Kruschke 2018). 

The process of fitting GAMs involves finding estimates for the coefficients of the 

underlying “basis functions”; we do not cover this concept here, but it is described in detail 

in Wood (2017). Together, these coefficients are multivariate normal distributions, with 

mean vector and covariance matrix specified by the fitted model (Simpson 2018). A single 

multivariate random draw from this distribution generates a new set of 𝛽𝛽𝑗𝑗 estimates, which 

represent a slightly altered overall smooth that is consistent with the fitted model, but also 

represent only one realization of the model uncertainty (Rosenbaum et al. 2019). With a 

sufficiently large number of random draws, a distribution of plausible fits consistent with 

the fitted model can be generated to supplement conventional point estimate and 

confidence interval summary of parameter estimates, a process referred to as posterior 

simulation (Wood 2017, Simpson 2018). Compared to the dichotomy of being inside or 

outside a conventional (1 − α) confidence interval, posterior simulation provides the exact 

proportion of the posterior distribution that is less (or greater) than a critical value (e.g., 

slope = 0), providing enhanced interpretation and communication of model uncertainty. 

The approach can be applied to the smoothed GAM estimates (predicted values) and first 

derivatives (rate of change parameter), and thus serves as a unifying framework for model 

inferences and outputs. 
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