But also

Wayne Kasworm
Chris Servheen
Tom Radandt
Bruce McLellan

A Canadian story, the international Selkirk story is coming
Fragmentation landscape

Proctor et al 2012

Reduced genetic diversity, (heterozygosity)
Isolated by humanity
Isolated by humanity & forestry roads
Isolated by humanity & forestry roads
Proctor et al 2015

Connectivity

GPS collared bears

Corridor prediction

Grizzly bear connectivity mapping in the Canada-US trans-border region

USA

Canada

BC

WA

ID

MT

Proctor et al 2015

Core grizzly bear habitat
Movement corridor potential

low linkage

high linkage

0
50
100 Km
GPS collared bears

Proctor et al 2015

Grizzly bear connectivity mapping in the Canada-US trans-border region

USA

Core grizzly bear habitat

Movement corridor potential

low linkage

high linkage

0 50 100 Km

Canada

BC

WA

MT
Figure 1a) South Selkirk grizzly bear population unit in trans-border population context

Figure 1b) South Selkirk population unit in context of the North American grizzly bear distribution
Conservation status in BC

The old system

New improved system

Figure 2a) Past map of threatened grizzly bear population units in British Columbia (Hamilton and Austin 2004). This was the understanding and policy when the Trans-border Grizzly Bear Project formed in 2004.

Figure 2b) Current map of conservation ranking of grizzly bear population units in British Columbia (Morgan et al. 2020).
Step 1: Identify the classification of the population in question and the scale of the area you are managing

- Extreme
- High
- Moderate
- Low
- Very Low

Step 2: Identify the issues facing the population in question

- Low population size, well below expected?
- Declining population trend
- Expanding population into human environments
- Excessive human bear conflicts
- Excessive conflict mortalities
- Fragmentation or isolation
- Other?

Step 3: Identify the causes or primary limiting factors and the spatial arena of the above conservation issues

- Habitat Loss (Human developments)
- Habitat degradation
- Low habitat security (high road density)
- Direct adult mortality
- Cub mortality
- Reduced fecundity (low reproductive rate)
- Food limitation
- Poor attractant management (residential or commercial)
- Poor attractant management (agricultural or ranching)
- Highway or rail mortalities
- Mining related mortalities
- Wildfire, natural disasters
- Disease / pollution
- Climate Change & Severe Weather

Step 4: Identify management objectives for the grizzly bear population

- Increase population
- Reduce bear population
- Exclude Bears
- Improve coexistence
- Minimize Human-Bear Conflict
- Reduce human risk
- Re-establish Connectivity
- OTHER?

Step 5: Identify, prioritize, and implement the management actions to solve the problems to meet management objectives (e.g., sources of human bear conflicts)

Reduce conflicts

- Bear Hazard Assessment (Bear Smart Program in communities and Wildsafe BC in rural areas)
- Attractant Management, (e.g., programs with expertise & funding support)
- Education (BC Wildsafe)
- Workshops
- Presentations
- Enforcement (BC COS Regional Districts)
- Bylaws
- Fines

Conflict response

- BC COS Non-Lethal Management
 - Identify best GB habitats for access reduction, identify critical foods, habitat mapping
 - Community consultation
 - Seasonal or permanent road closures or vehicle hunting exclusions
 - Hunter education, Species ID, camp attractant mgt

- Lethal Removal
 - Identify attractive sinks (e.g., ungulate dumps along Hwy)
 - Cost-share electric fencing
 - Bear resistant garbage containers
 - Livestock feed containment
 - Livestock protection, (e.g., calving pens, livestock dogs)
 - Deadstock disposal (e.g., fenced or composted)
 - Ag crop protection, (orchards, corn)

Reduce backcountry mortality and habitat displacement

Connectivity management

- Identify corridors
- Implement conflict reduction measures
- Implement non-lethal conflict response
- Strategic land trust acquisitions & easements & trades
- Access mgt in corridors
- Consider crossing structures

Step 6: Foster public stewardship to encourage voluntary compliance

- Land Use Plans
- Recreation Plans
- Critical foraging habitat plans

Step 7: Monitoring effectiveness of management to meet objectives

- Sustainable mortality rates
- Sustainable conflict rates
- Monitor bear population, (e.g., periodic population survey
- Monitor connectivity if relevant
Management Plan for the Yahk and South Selkirk Grizzly Bear (Ursus arctos) Subpopulations, British Columbia

Grant MacHutchon and Michael Proctor
Trans-Border Grizzly Bear Project
Kaslo, B.C.

March 2016
Potential causes of threatened status

- Historic mortality
- Recent / Current / Ongoing mortality
- Decreased habitat quality
- Decreased habitat security

Fragmentation / isolation

Inhibited / decreased population growth

Threatened status
Creston Valley separating the South Selkirk & Purcell Mts
Creston Valley separating the South Selkirk & Purcell Mts
Creston Valley separating the South Selkirk & Purcell Mts
Conserved connectivity lands in Creston Valley corridor

Nature Conservancy Canada (NCC)

Figure 19. A close up view of Creston Valley, B.C. connectivity predictions (Proctor et al. 2015) juxtaposed with Nature Conservancy of Canada (NCC) purchased properties and the Creston Valley Wildlife Management Area.
Non-lethal conflict response when appropriate – with BC Conservation Officers

Figure 20. Radio collaring a grizzly bear that was about to escalate its pattern of conflicts. These events can be an excellent opportunity to educate local people and build appreciation for the bears. And providing a measure of negative reinforcement to a bear that has come into a farm looking for food, can often teach them to avoid people in the future (right panel).
Figure 21. An electric fence set-up around a cherry orchard in the Creston Valley funded through our cost-share program and, a bear safety course with bear spray training in the Creston Valley.

Cost-share electric fencing

Figure 22. An electric fence within and on the periphery of the South Selkirk GBPU. Fences were planned, organized and overseen by Grizzly Bear Coexistence Solutions
Access management on NCC lands near huckleberry patches

Figure 23. Access management applied with Nature Conservancy Canada’s Darkwoods property with high overlap with productive huckleberry patches.
Figure 5a) DNA grid and sampling sites 2020 in the eastern 2/3 and 2021 in the western 1/3 of the South Selkirk Grizzly Bear Population Unit.

Figure 5b) The 2005 grizzly bear DNA survey carried out by the Trans-border Grizzly Bear Project.
Both sex detections at hair sampling sites of grizzly bears in the South Selkirk GBPU in 2020-2021 in southeastern British Columbia.

Figure 7. Both sex detections at hair sampling sites of grizzly bears in the South Selkirk GBPU in 2020-2021 in southeastern British Columbia.
Figure 8a) Female and b) male grizzly bear detections in the South Selkirk GBPU of southwest British Columbia 2020-2021.

Figure 9) Grizzly bear recaptures (detections at different sites) across years. Different colors represent different individuals. Small open circles and +s are sites with no detections.
Closure corrected estimate - average abundance & density at any one time

<table>
<thead>
<tr>
<th>SECR estimates</th>
<th>Ind</th>
<th>Ave Abundance</th>
<th>Abundance L 95%CI</th>
<th>Abundance U 95% CI</th>
<th>Abundance CV</th>
<th>Ave Density</th>
<th>Density L 95%CI</th>
<th>Density U 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020</td>
<td>55</td>
<td>51.5</td>
<td>40.2</td>
<td>65.9</td>
<td>12.6%</td>
<td>14.3</td>
<td>7.1</td>
<td>29.1</td>
</tr>
<tr>
<td>2021</td>
<td>21</td>
<td>17.7</td>
<td>11.8</td>
<td>26.6</td>
<td>21.1%</td>
<td>11.7</td>
<td>7.2</td>
<td>18.8</td>
</tr>
<tr>
<td>Overall</td>
<td>76 (73)</td>
<td>69.2</td>
<td>56</td>
<td>85.5</td>
<td>10.8%</td>
<td>17.2</td>
<td>13.5</td>
<td>21.8</td>
</tr>
<tr>
<td>2020N (2005 equivalent)</td>
<td>44</td>
<td>44.2</td>
<td>33</td>
<td>59.1</td>
<td>15%</td>
<td>21.9</td>
<td>16.4</td>
<td>29.3</td>
</tr>
<tr>
<td>2005</td>
<td>30</td>
<td>32</td>
<td>22.3</td>
<td>46</td>
<td>19%</td>
<td>15.1</td>
<td>10.5</td>
<td>21.7</td>
</tr>
<tr>
<td>Proctor et al 2007</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Open abundance estimate

<table>
<thead>
<tr>
<th>Closed estimates</th>
<th>Ind</th>
<th>Chao</th>
<th>L 95%CI</th>
<th>U 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020</td>
<td>55</td>
<td>67.1</td>
<td>59.3</td>
<td>88.7</td>
</tr>
<tr>
<td>2021</td>
<td>21</td>
<td>27.3</td>
<td>5.2</td>
<td>22.5</td>
</tr>
<tr>
<td>Overall</td>
<td>76 (73)</td>
<td>90.4</td>
<td>73</td>
<td>106.2</td>
</tr>
<tr>
<td>Proctor et al 2007</td>
<td></td>
<td>58</td>
<td>50</td>
<td>70</td>
</tr>
</tbody>
</table>
SECR model with “explanatory” covariates

<table>
<thead>
<tr>
<th>No</th>
<th>Model</th>
<th>AICc</th>
<th>ΔAICc</th>
<th>wi</th>
<th>K</th>
<th>logLik</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Huckleberry 3k + greenness 3k + road density 3k + alpine 8k</td>
<td>1299.7</td>
<td>0</td>
<td>0.44</td>
<td>11</td>
<td>-636.8</td>
</tr>
<tr>
<td>2</td>
<td>Huckleberry 3k + road density 3k</td>
<td>1306.3</td>
<td>6.6</td>
<td>0.02</td>
<td>9</td>
<td>-642.8</td>
</tr>
<tr>
<td>3</td>
<td>Huckleberry 8k + greenness 3k + road density 3k</td>
<td>1306.4</td>
<td>6.7</td>
<td>0.02</td>
<td>10</td>
<td>-641.5</td>
</tr>
<tr>
<td>4</td>
<td>Huckleberry 8k + secure habitat</td>
<td>1306.9</td>
<td>7.2</td>
<td>0.01</td>
<td>9</td>
<td>-643.1</td>
</tr>
<tr>
<td>5</td>
<td>constant</td>
<td>1315.5</td>
<td>15.8</td>
<td>0</td>
<td>7</td>
<td>-649.9</td>
</tr>
</tbody>
</table>

Detections vs road density

Figure 10a) Road density average over a 3k radius with both sex grizzly detections in the South Selkirk GPBU in southeastern B.C. 2020-2021.

GB Density vs secure habitat & huckleberry

Figure 10b) Grizzly density relative to secure habitat & huckleberry patches.
Figure 11. Grizzly bear both sex grizzly density surface based on the most supported model in Table 5 in the South Selkirk GBPU of southeast British Columbia 2020-2021. Detections and the number within sub-areas is the density with the population (abundance in parentheses).
Figure 12a) Mothers and offspring detected during 2020-2021 grizzly bear survey in the South Selkirk GBPU 2020-2021.

Figure 12b) All Canadian grizzly bear mothers and offspring detected in our long-term genetic data set.
Figure 14. Assignments of population of origin for grizzly bear genotypes in the South Selkirks \textbf{a}) prior to 2006 and \textbf{b}) up through 2021. Both South Selkirk grizzly bears are compared to grizzly bears in the Purcell Mountains to the east. Immigrants into the South Selkirks are represented by the red dots (detected in the Selkirks) within the cluster of white dots (assign to the Purcells their likely population of origin) to the right within each panel. Note the very few immigrants into the South Selkirks in the top pre 2006 panel and the many more immigrants in the right panel (red dots within the black oval) with bears up through 2021. This demonstrates that we had detected very few immigrants into the South Selkirk population before 2006 (Proctor et al. 2005, 2012, 2018) and many more currently.
Figure 15a. Grizzly bear family pedigrees showing immigrants from the Purcell Mts. into the South Selkirk population. Panel a) depicts immigrant Cpt Hook, an offspring of Maeve and Bob from the Purcell Mts. and eventually had 13 offspring (5F, 8M) 8 different females in the South Selkirks. Panel b) shows Immigrant male 14151 an offspring of Kelly and Kidd from the Purcell Mts. and eventually had 3 offspring (1F, 2M) with two mothers. Bears with names were live captured and radio collared. 15141 was also detected in the U.S, open circles)
9 immigrants that bred 27 offspring (12F, 15M)

Figure 13a) Grizzly bear immigrants into the South Selkirk GBPU in southeast British Columbia prior to 2006. Adapted from Proctor et al. (2018)

Figure 13b) Grizzly bear immigrants into the South Selkirk GBPU (9) and 27 offspring representing gene flow in southeast British Columbia as of 2021.
A decrease in human-caused non-hunt mortality

Figure 16. Updated grizzly bear mortality graphs from Proctor et al. (2018), data extended to 2021.

- **a)** The Canadian South Selkirk population between 1984-2003 (raw data regression, $P = 0.45$) and
- **b)** the South Selkirk between 2004-2021 (raw data regression, $P = 0.10$), and
- **c)** the control population that received no enhanced conflict management, B.C. South Rocky population between 1980 and 2021 (raw data regression, $P < 0.001$).
Human-caused non-hunt mortality relative to population size – that was increasing

Figure 17. Grizzly bear mortality rate as a proportion of population size over almost 2 decades in the Canadian South Selkirk GBPU. We estimated annual population size by using our 2005 estimate and applying a 2.9% annual increase as measured by Kasworm et al. (2022) data presented is a 3 year running average, raw data regression, $P = 0.07$.
Recovery targets from MacHutchon and Proctor (2016) and results from the 2020-2021 grizzly bear DNA-based survey.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>SECR</td>
<td>Not closure corrected</td>
<td>Not closure corrected</td>
</tr>
<tr>
<td>SS Abundance</td>
<td>80</td>
<td>69 (56-85)</td>
<td>90 (78-128)</td>
<td>58 (50-70)</td>
</tr>
<tr>
<td>East SS abundance 2005 vs 2020</td>
<td></td>
<td>44 (33-59)</td>
<td>32 (22-46)</td>
<td></td>
</tr>
<tr>
<td>Population trend</td>
<td>stable to increasing</td>
<td>2% annual increase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Females, 50% of pop</td>
<td>40</td>
<td>44 detected</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reproductive females</td>
<td>20</td>
<td>17 detected (21 estimated)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F Reproduction distribution</td>
<td>5 of 6 subareas</td>
<td>6 of 6 subareas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female mortality</td>
<td>1 reported / year</td>
<td>0.5 reported / year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Periodic immigrants</td>
<td>2 / 10yrs</td>
<td>1 F, 11 M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immigrant breeding - geneflow</td>
<td>periodic</td>
<td>12 F</td>
<td>15M offspring from immigrant parent</td>
<td></td>
</tr>
</tbody>
</table>
Would these patterns have happened naturally, with the status quo as it was in the early 2000s?

Other populations have been increasing, in BC, Alberta, & the US

We never have perfect matched case controlled studies

My answer is “to some degree, yes”
International population was increasing from
1983- 2002: ~1.9%
1983 – 2021: ~3.1%

But we have detected some profound improvements, particularly in connectivity. When I started, any bear in the Creston Valley had a life span of about 3 days.
Think beyond bears to the wider ecosystem

This work inspired “Kootenay Connect” a region-wide Ecological Corridors project. Now in year 4 of 7

Figure 18. A Nature Conservancy Canada display in the Creston Valley describing an Ecological Corridor inspired by the overlap of B.C’s endangered northern leopard frog habitat within a grizzly bear corridor between the Purcell and South Selkirk Mountains.