Predicted Habitat Selection and Movement Corridors for Grizzly Bears in Western Montana

Sarah Sells¹, Cecily Costello², Paul Lukacs³, Lori Roberts², & Milan Vinks²

Grizzly bear habitat selection across the Northern Continental Divide Ecosystem

Sarah N. Sells a,*, Cecily M. Costello b, Paul M. Lukacs c

a Montana Cooperative Wildlife Research Unit, Wildlife Biology Program, University of Montana, Missoula, MT 59812, United States of America
b Montana Fish, Wildlife and Parks, 400 N Montana Rd, Kalispell, MT 59901, USA
c Wildlife Biology Program, W.A. Franke College of Forestry and Conservation, University of Montana, Missoula, MT 59812, United States of America

Grizzly bear movement models predict habitat use for nearby populations

Sarah N. Sells a,*, Cecily M. Costello b, Paul M. Lukacs c, Frank T. van Manen d, Mark Haroldson d, Wayne Kasworm e, Justin Teisberg e, Milan A. Vinks b, Dan Bjornlie f

d U.S. Geological Survey, Montana Cooperative Wildlife Research Unit, University of Montana, Missoula, MT 59812, United States of America
e Wildlife Biology Program, W.A. Franke College of Forestry and Conservation, University of Montana, Missoula, MT 59812, United States of America
f U.S. Fish and Wildlife Service, Grizzly Bear Recovery Program, 385 Fish Hatchery Road, Libby, MT 59923, United States of America

g Wyoming Game and Fish Department, Lander, WY 82071, United States of America
Motivation

- Understand spatial behavior
 - Habitat use
 - Range expansion
 - Potential for connectivity
Approach

- Develop movement models
 - Integrated step selection functions (iSSFs)
 - Model for each individual
- Test hypotheses
- Identify predictive models
- Simulate movements
NCDE Data

- GPS collars, 2003 – 2021
 - May – Nov
 - 3-hour fix rate
 - 47 females
 - >59,000 fixes
 - 20 males
 - >16,000 fixes
Hypotheses

• **Grizzly bears select habitat with:**

 • > food availability to maximize fitness

 • < ruggedness to reduce energy expenditure

 • > forest & riparian areas for security, thermal regulation, & food

 • < building density to avoid humans

 • < distance to secure habitat* to avoid humans

• **Generally true, with extensive individual variation**

* USFWS: areas > 500 m from roads on federal, state, & tribal lands
Model Application: Phase 1

- Simulate for NCDE
- Evaluate predictive accuracy

Sells et al. 2022. Biological Conservation
Simulating Spatial Behavior

- Simulate individual’s movements
Simulating Spatial Behavior
Simulating Spatial Behavior

- Repeat
- Summarize results
 - # of steps/cell → 10 quantile bins
 - iSSF class: 1 = low use, 10 = high
- Assess predictive accuracy
Females

Males

Low ISSF Class High

Sells et al. 2022. Biological Conservation
Locations, 2003 – 2021
- 165 females, 97 males
- >377,000 fixes

Sells et al. 2022. Biological Conservation

Highly predictive across season & years

Females: % fixes per class
- 73.5%

Males: % fixes per class
- 83.6%
Model Application: Phase 2

- Simulate for other populations
- Evaluate transferability of results

Sells et al. 2023. Biological Conservation
Females

Males

Low ISSF Class

High

Sells et al. 2023. Biological Conservation
Low ISSF Class

High

75%

58.2%

SE/CYE Females:

SE/CYE Males:

GYE Females:

GYE Males:

Locations, 2010 – 2021

• 32 females, 40 males
• >106,000 fixes

Locations, 2010 – 2021

• 42 females, 124 males
• >526,000 fixes

Sells et al. 2023. Biological Conservation
Model Application: Phase 3

- **Simulate directed connectivity paths**
 - Start & end nodes
 - Randomized shortest paths

- **Simulate undirected connectivity path**
 - Start nodes only
 - 5,000 steps (~3 active seasons)

Sells et al. In review. Biological Conservation
Females

Males

*Draft results - do not publish

Sells et al. In review. Biological Conservation
*Draft results – do not publish
Females

Males

*Draft results - do not publish
Next Steps

- External predictions
 - Model NCE & BE

- Model home ranges
 - Understand range expansion
Application

- Decision-making, e.g.,
 - Conservation strategies
 - Habitat management
 - Monitoring design
 - Remember this is movement model, not residency model
NCDE
>84% public

GYE
98% public

Connectivity area
54% public
Females

Males

*Draft results – do not publish

Sells et al. In review. Biological Conservation
Draft results - do not publish
Funding
MFWP & USGS

Acknowledgements
We thank researchers and managers who contributed to making this work possible, including biologists and technicians whose effort to collar grizzly bears provided the data for this work over the past 20 years.

Special thanks also to Justin Gude, Hilary Cooley, Jennifer Fortin-Noreus, Wayne Kasworm, Justin Teisberg, Tom Radandt, Frank van Manen, Mark Haroldson, Dan Bjornlie, & Mike Mitchell.

Sarah.Sells@umontana.edu