NCDE Demographic Monitoring A Schematic

Objective 2: Manage mortalities from all sources to support an estimated probability of at least $\mathbf{9 0 \%}$ that the grizzly bear population within the DMA remains above 800 bears, considering the uncertainty associated with all of the demographic parameters.

Population modeling

- Starting size 765 in 2004
- Observed vital rates
- Dispersal outside the DMA
- Independent survival rates
- Cub / yearling survival rates
- Mean litter size
- Proportion of females with cubs
- Estimated population size
- Probability ${ }_{800}$

Population projections

- Assume current reproductive rates
- Assume independent male survival $=0.85$
- Vary independent female survival 0.90 to 0.94
- Identify projections where Probability $_{800} \geq 0.90$ for 6 years

Target thresholds

- Year 1
- Year 2
- Year 3
- Year 4
- Year 5
- Year 6

Select target projection and calculate thresholds

- Independent female survival rate (6-year average)
- Number of independent female TRU mortalities (6 -year average)
- Number of independent male TRU mortalities (6-year average)

Calculate observed
Thresholds $/$ Observed

- Cub / yearling survival rates
- Mean litter size
- Proportion of females with cubs

Table 4.8.1. Input parameter estimates used for stochastic modeling of NCDE grizzly bear populations with RISKMAN software.

Input parameter	Estimate	SE	Notes
Probability with 1 offspring	0.160		Held constant among models
Probability with 2 offspring	0.590		Held constant among models
Probability with 3 offspring	0.250		Held constant among models
Mean litter size	2.100	0.050	Held constant among models
Proportion with litters	0.287	0.031	Held constant among models
Male survival age 0	0.553	0.070	Held constant among models
Male survival age 1	0.639	0.080	Held constant among models
Male survival ages 2-28	0.895	0.054	Base rate, but varied for investigations
Female survival age 0	0.553	0.070	Held constant among models
Female survival age 1	0.639	0.080	Held constant among models
Female survival ages 2-28	0.947	0.014	Base rate, but varied for investigations
Initial population size	765	29.27	Base rate, but varied for investigations

Grizzly Bear Demography and Population Management in the NCDE

Rates	Years	Vital rates to estimate population in 2018
Survival	2004-2013	No evidence of change during 2014-2017 (only 4 yrs of additional data)
Reproduction	$2004-2014$	No evidence of change during 2015-2017 (only 3 yrs of additional data)

Final estimate will pertain
to start of Year 1

Analyses
Reports

Population modeling, based on vital rates from Costello et al. (2016), indicates that the estimated probability that the population was above 800 grizzly bears increased from only 21% in 2004 to 90% in 2010 , and has been $\geq 99 \%$ since 2012 (Figure 4). Median population estimates for those years when Objective 2 was met ranged from 885 bears in 2010 to 1,047 bears in 2018. Thus, given our current rates and levels of uncertainty, managing for a population with an estimated probability of at least 90% being above 800 bears necessitates maintaining an estimated population size of approximately $950-1,000$ grizzly bears. Additionally, larger estimated population sizes would be needed if the level of uncertainty increases.

Figure 4. Estimated population size (median and $90^{\text {th }}$ percentile; left) and estimated probability that the population was above 800 grizzly bears (right) during 2004-2018, based on current observed vital rates (Costello et al. 2016).

- Independent survival rates
- Cub / yearling survival rates
- Mean litter size
- Proportion of females with cubs

Population modeling

- Starting size 765 in 2004
- Observed vital rates
- Dispersal outside the DMA
- Assume current reproductive rates
- Assume independent male survival $=0.85$
- Vary independent female survival 0.90 to 0.94
- Identify projections where Probability $_{800} \geq 0.90$ for 6 years
- Estimated population size
- Probability 800

Figure 2. Projected population size (median and 95th percentile; right) and probability that the population is above 800 bears (left) for independent varying female survival rates under a scenario of an estimated population size of approximately 1000 bears.

Table 2. Modeling results used to establish thresholds for independent female survival and mortality for the NCDE population under a scenario of an estimated population size of approximately 1000 bears.

Model input		Model output			Independent mortality thresholds (2019-2024)	
Indepen during	$\begin{aligned} & \text { survival } \\ & 9-2043 \end{aligned}$	Probability population >800 in 2024	No. years before <90\% probability population >800	$\begin{gathered} \text { Median } \lambda \\ (2019- \\ 2024) \\ \hline \end{gathered}$		
Female	Male				Female	Male
0.90	0.85	0.87	5	0.98	32	31
0.91	0.85	0.93	9	0.99	29	31
0.92	0.85	0.98	20	1.00	27	31
0.93	0.85	0.99	>25	1.00	24	32
0.94	0.85	>0.99	>25	1.01	22	32

Population modeling

- Starting size 765 in 2004
- Observed vital rates
- Dispersal outside the DMA

Analyses
Reports

Population projections

- Assume current reproductive rates
- Assume independent male survival $=0.85$
- Vary independent female survival 0.90 to 0.94
- Identify projections where Probability $_{800} \geq 0.90$ for 6 years

Target thresholds

- Year 1
- Year 2
- Year 3
- Year 4
- Year 5
- Year 6

Select target projection and calculate thresholds

- Independent female survival rate (6-year average)
- Number of independent female TRU mortalities (6 -year average)
- Number of independent male TRU mortalities (6-year average)

Population modeling

- Starting size 765 in 2004
- Observed vital rates
- Dispersal outside the DMA
- Independent survival rates
- Cub / yearling survival rates
- Mean litter size
- Proportion of females with cubs
- Estimated population size
- Probability ${ }_{800}$

Population projections

- Assume current reproductive rates
- Assume independent male survival $=0.85$
- Vary independent female survival 0.90 to 0.94
- Identify projections where Probability $_{800} \geq 0.90$ for 6 years

Target thresholds

- Year 1
- Year 2
- Year 3
- Year 4
- Year 5
- Year 6

Select target projection and calculate thresholds

- Independent female survival rate (6-year average)
- Number of independent female TRU mortalities (6 -year average)
- Number of independent male TRU mortalities (6-year average)

Calculate observed
Thresholds $/$ Observed

Appendix E. Thresholds and observed estimates for demographic objectives described in the 2019 Conservation Strategy, 2017-2022. Parameters include occupancy of females with offspring within 23 Bear Management Unit (BMUs) in the Primary Conservation Area (PCA) and 7 Occupancy Units (OUs) in Zone 1, tallied over the last 6 years; survival rate of independent females within the Demographic Monitoring Area (DMA) averaged over the last 6 years; and numbers of total reported and unreported (TRU) mortalities of independent female and male grizzly bears within the DMA averaged over the last 6 years.

		Threshold/	Year						
Parameter	Area or Sex	observed	2017	2018	2019	2020	2021	2022	
Occupancy	PCA (BMUs)	Minimum	21	21	21	21	21	21	
		Observed	23	22	22	23	23	23	
	Zone 1 (OUs)	Minimum	6	6	6	6	6	6	
		Observed	7	7	7	7	7	7	
Survival rate	Female	Minimum	0.93	0.93	0.93	0.93	0.93	0.92	
		Observed	0.95	0.93	0.94	0.93	0.93	0.93	
TRU mortalities	Female	Maximum	22	22	23	24	25	25	
		Observed	14	15	16	13	15	15	
		Male	Maximum	28	28	29	29	30	30
		Observed	19	21	21	21	23	25	

Population modeling

- Starting size 765 in 2004
- Observed vital rates
- Dispersal outside the DMA
- Independent survival rates
- Cub / yearling survival rates
- Mean litter size
- Proportion of females with cubs
- Estimated population size
- Probability ${ }_{800}$

Population projections

- Assume current reproductive rates
- Assume independent male survival $=0.85$
- Vary independent female survival 0.90 to 0.94
- Identify projections where Probability $_{800} \geq 0.90$ for 6 years

Target thresholds

- Year 1
- Year 2
- Year 3
- Year 4
- Year 5
- Year 6

Select target projection and calculate thresholds

- Independent female survival rate (6-year average)
- Number of independent female TRU mortalities (6 -year average)
- Number of independent male TRU mortalities (6-year average)

Calculate observed
Thresholds $/$ Observed

Median population estimate in 2018 1,047 bears Probability $_{800}>99 \%$

No annual estimate reported

Population modeling

- Starting size 765 in 2004
- Observed vital rates
- Dispersal outside the DMA
- Independent survival rates
- Cub / yearling survival rates
- Mean litter size
- Proportion of females with cubs
- Estimated population size
- Probability ${ }_{800}$

Population projections

- Assume current reproductive rates
- Assume independent male survival $=0.85$
- Vary independent female survival 0.90 to 0.94
- Identify projections where Probability $_{800} \geq 0.90$ for 6 years

Target thresholds

- Year 1
- Year 2
- Year 3
- Year 4
- Year 5
- Year 6

Select target projection and calculate thresholds

- Independent female survival rate (6-year average)
- Number of independent female TRU mortalities (6 -year average)
- Number of independent male TRU mortalities (6-year average)

Calculate observed
Thresholds $/$ Observed

