
NCDE Demographic Monitoring A Schematic

Objective 2: Manage mortalities from all sources to support an estimated probability of at least 90% that the grizzly bear population within the DMA remains above 800 bears, considering the uncertainty associated with all of the demographic parameters.

2004	Previous 6 years	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	Vital rate analysis	 Independent survival rates Cub / yearling survival rates Mean litter size Proportion of females with cubs 					
C	compare to earlier time fram	le,					
	evaluate if change occurred	d					
AnalyRepo	/ses rts						

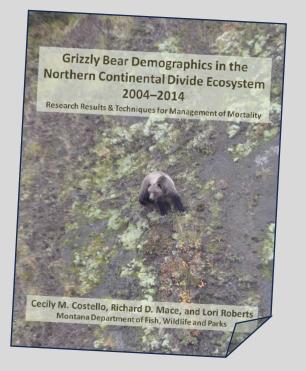
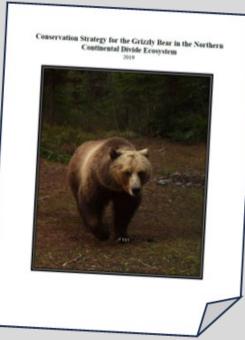


Table 4.8.1. Input parameter estimates used for stochastic modeling of NCDE grizzly bear populations with RISKMAN software.

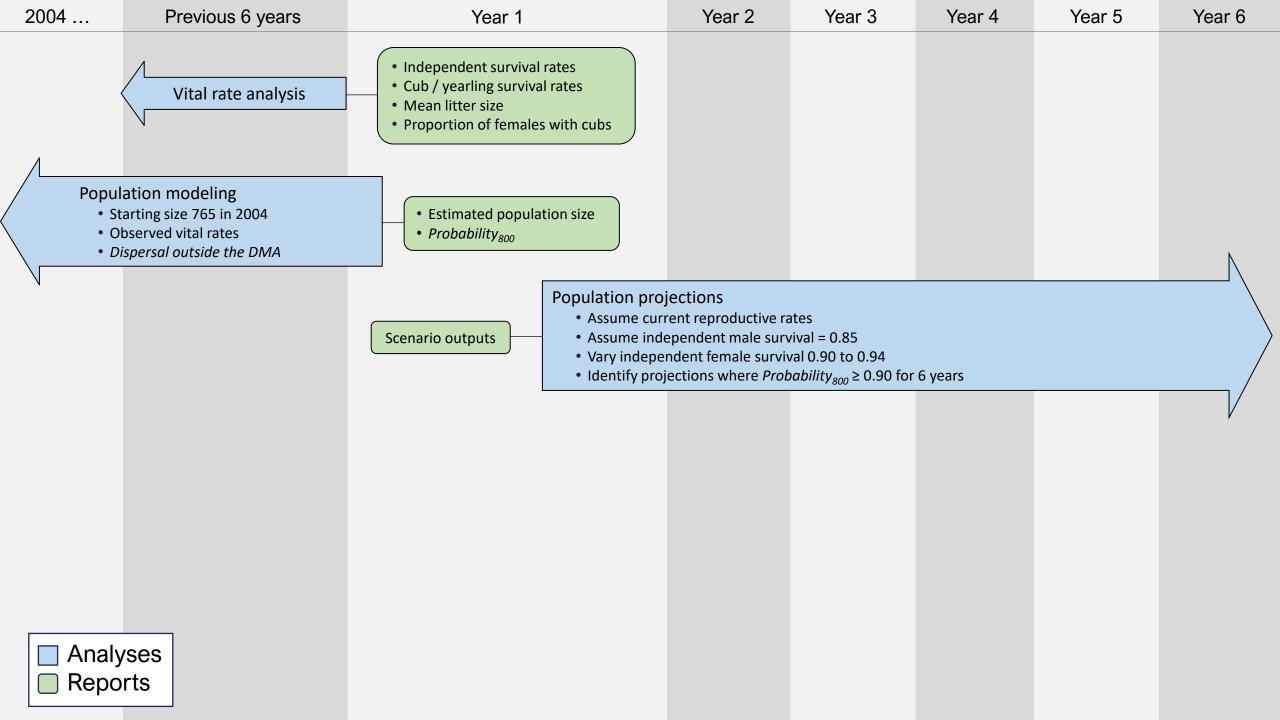

Input parameter	Estimate	SE	Notes
Probability with 1 offspring	0.160		Held constant among models
Probability with 2 offspring	0.590		Held constant among models
Probability with 3 offspring	0.250		Held constant among models
Mean litter size	2.100	0.050	Held constant among models
Proportion with litters	0.287	0.031	Held constant among models
Male survival age 0	0.553	0.070	Held constant among models
Male survival age 1	0.639	0.080	Held constant among models
Male survival ages 2–28	0.895	0.054	Base rate, but varied for investigations
Female survival age 0	0.553	0.070	Held constant among models
Female survival age 1	0.639	0.080	Held constant among models
Female survival ages 2–28	0.947	0.014	Base rate, but varied for investigations
Initial population size	765	29.27	Base rate, but varied for investigations

Grizzly Bear Demography and Population Management in the NCDE

Page 61

Rates	Years	Vital rates to estimate population in 2018
Survival	2004-2013	No evidence of change during 2014-2017 (only 4 yrs of additional data)
Reproduction	2004-2014	No evidence of change during 2015-2017 (only 3 yrs of additional data)

2004	Previous 6 years	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	Vital rate analysis	 Independent survival rates Cub / yearling survival rates Mean litter size Proportion of females with cubs 					
• :	ulation modeling Starting size 765 in 2004 Observed vital rates <i>Dispersal outside the DMA</i>	Estimated population size Probability ₈₀₀					
Ν	Fi	nal estimate will pertain to start of Year 1					
AnalRep	lyses orts						



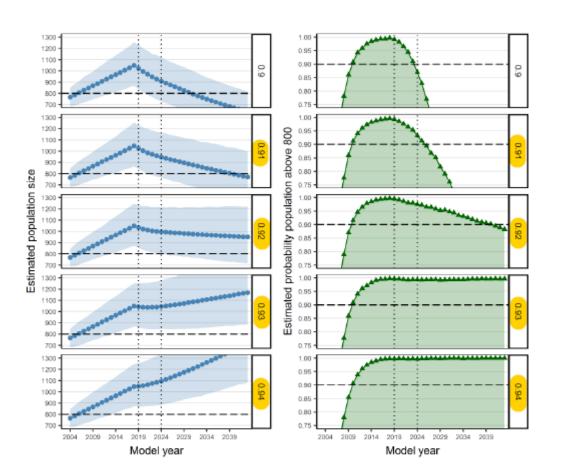

Population modeling, based on vital rates from Costello et al. (2016), indicates that the estimated probability that the population was above 800 grizzly bears increased from only 21% in 2004 to 90% in 2010, and has been ≥99% since 2012 (Figure 4). Median population estimates for those years when Objective 2 was met ranged from 885 bears in 2010 to 1,047 bears in 2018. Thus, given our current rates and levels of uncertainty, managing for a population with an estimated probability of at least 90% being above 800 bears necessitates maintaining an estimated population size of approximately 950–1,000 grizzly bears. Additionally, larger estimated population sizes would be needed if the level of uncertainty increases.

Figure 4. Estimated population size (median and 90th percentile; left) and estimated probability that the population was above 800 grizzly bears (right) during 2004–2018, based on current observed vital rates (Costello et al. 2016).

52 CHAPTER 2: DEMOGRAPHIC MONITORING AND MANAGEMENT

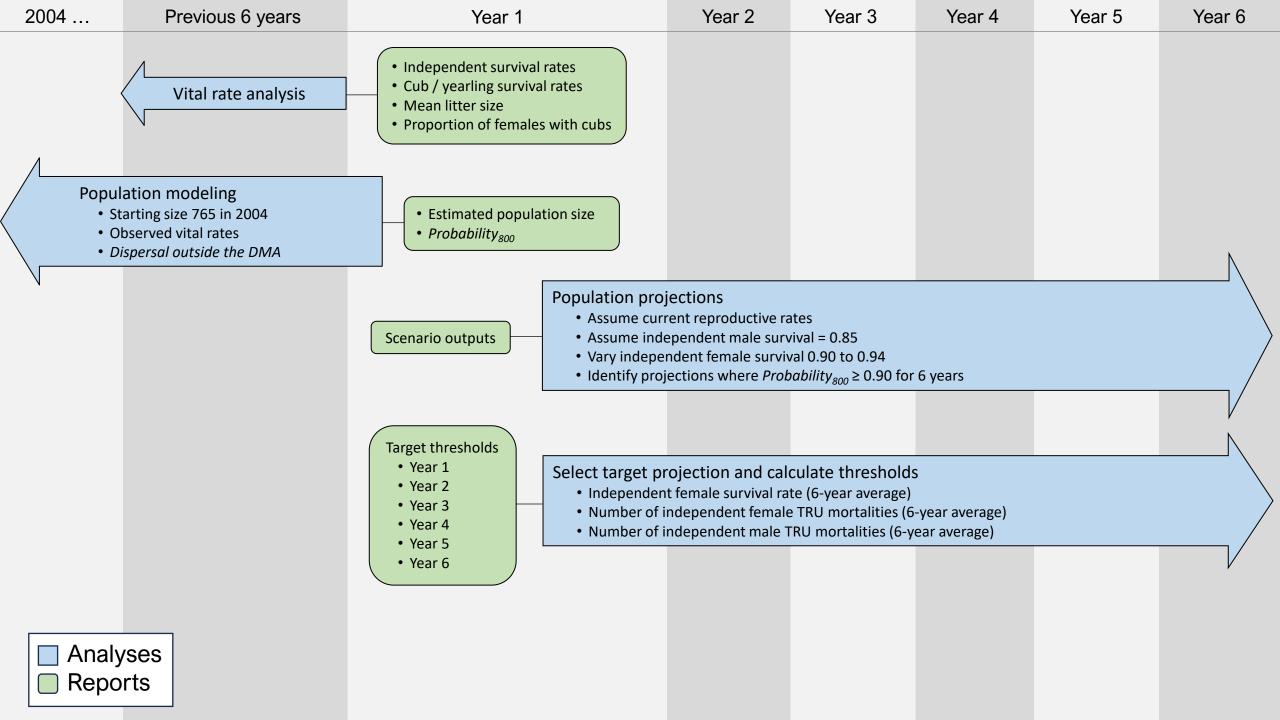
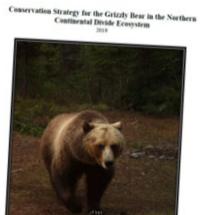
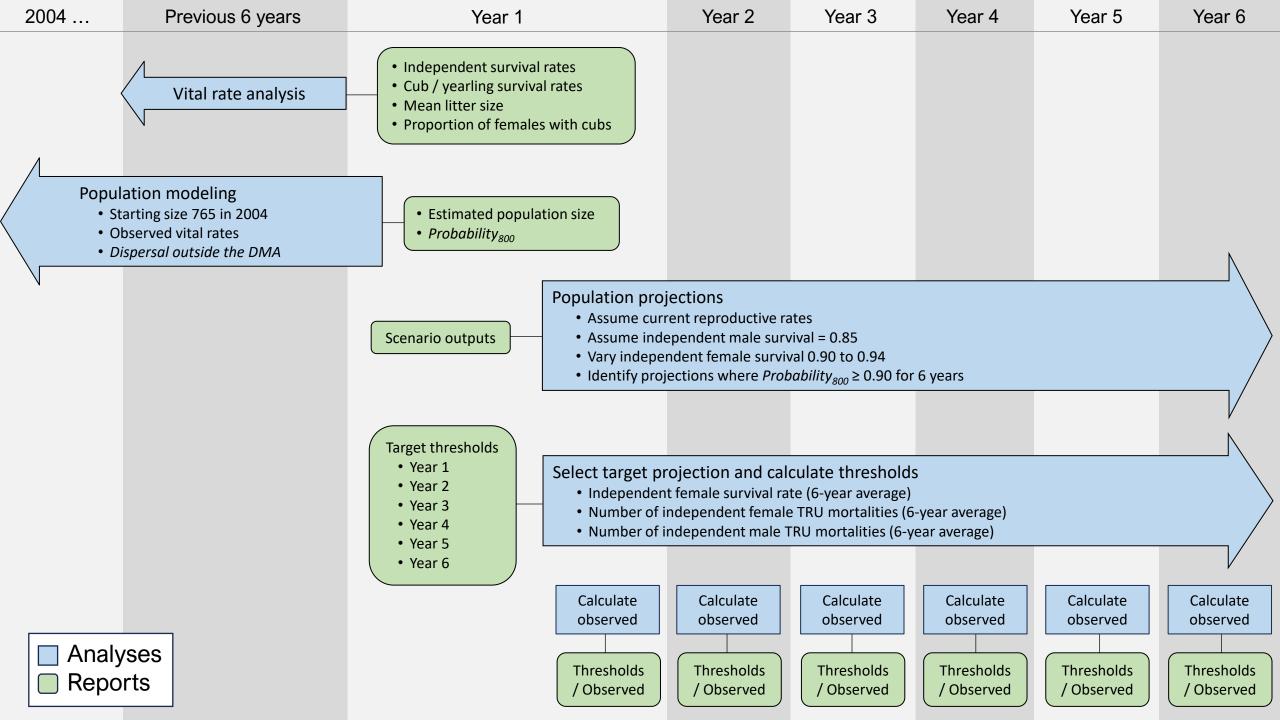
Figure 2. Projected population size (median and 95th percentile; right) and probability that the population is above 800 bears (left) for independent varying female survival rates under a scenario of an estimated population size of approximately 1000 bears.

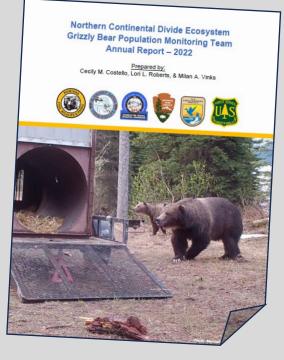
<text><text>

Table 2. Modeling results used to establish thresholds for independent female survival and mortality for the NCDE population under a scenario of an estimated population size of approximately 1000 bears.

Model input			Model output	Independent mortality			
Independe	ent survival	No. years			thres	holds	
during 2019-2043		Probability	robability before <90%		(2019-2024)		
		population	probability Median				
		>800 in	population	(2019-			
Female	Male	2024	>800	2024)	Female	Male	
0.90	0.85	0.87	5	0.98	32	31	
0.91	0.85	0.93	9	0.99	29	31	
0.92	0.85	0.98	20	1.00	27	31	
0.93	0.85	0.99	>25	1.00	24	32	
0.94	0.85	>0.99	>25	1.01	22	32	

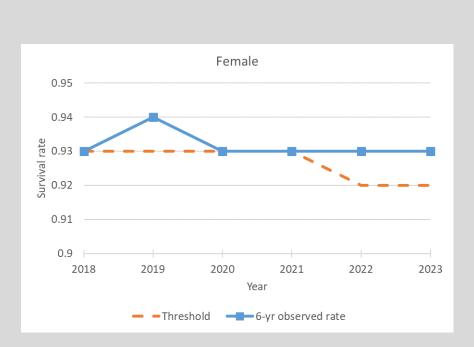
244 APPENDIX 3

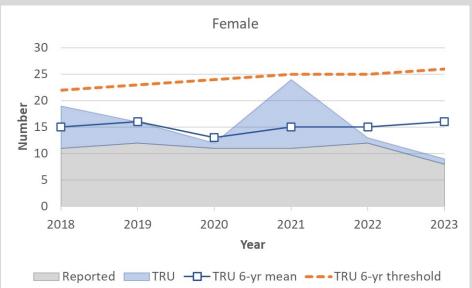




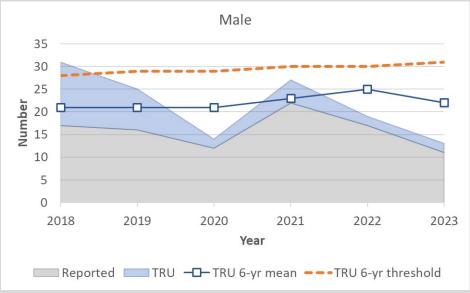

Table 3. Example of assignment and evaluation of annual thresholds for two hypotheticalmanagement periods beginning in 2013, including observed parameters for the years 2013–2017.

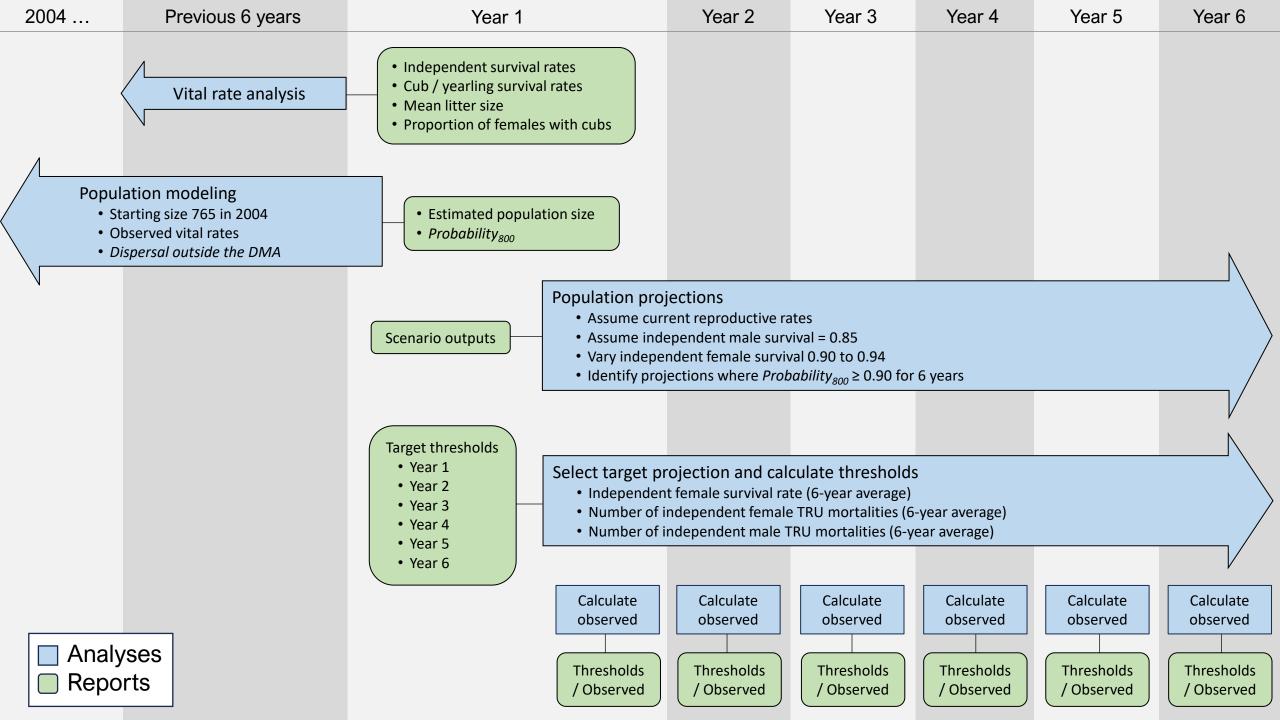
					Perio	d thresh	olds invol	ved in 6-	year runn	ing avera	ge		
		Period											
Parameter Female	Period 2013-2018	year 1	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
	2013-2018	-	0.93										
survival		2		0.93	0.93	0.93	0.93	0.93	0.93	0.93			
		4			0.95	0.95	0.95	0.93	0.95	0.95	0.93		
		5				0.95	0.95	0.93	0.95	0.95	0.93	0.93	
		6					0.95	0.95	0.95	0.95	0.95	0.95	0.93
	2019-2023	1						0.95	0.95	0.95	0.95	0.95	0.95
	2019-2025	2							0.52	0.92	0.92	0.92	0.92
		3								0.92	0.92	0.92	0.92
		4									0.92	0.92	0.92
		5										0.92	0.92
6-year-averag	to threshold	2	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.92	0.92
6-year-average			0.95	0.95	0.96	0.95	0.95	0.95	0.55	0.95	0.95	0.52	0.92
At or above t			Yes	Yes	Yes	Yes	Yes						
Female	2013-2018	1	22	22	22	22	22	22		•		•	•
TRU	2013-2010	2		22	22	22	22	22	22				
180		3			22	22	22	22	22	22			
		4				22	22	22	22	22	22		
		5					22	22	22	22	22	22	
		6						22	22	22	22	22	22
	2019-2023	1							27	27	27	27	27
	2010 2020	2								27	27	27	27
		3									27	27	27
		4									-	27	27
		5											26
6-year-averag	ze threshold	-	22	22	22	22	22	22	23	24	25	25	26
6-year-averag	-		10	15	15	16	15						
At or below t	-		Yes	Yes	Yes	Yes	Yes						
Male	2013-2018	1	28	28	28	28	28	28					
TRU		2		28	28	28	28	28	28				
		3			28	28	28	28	28	28			
		4				28	28	28	28	28	28		
		5					28	28	28	28	28	28	
		6						28	28	28	28	28	28
	2019-2023	1							31	31	31	31	31
		2								31	31	31	31
		3									31	31	31
		4										31	31
		5											
6-year-averag	ge threshold		28	28	28	28	28	28	29	29	30	30	31
6-year-avera			16	16	17	16	19						
	- hreshold		Yes	Yes	Yes	Yes	Yes						

56 CHAPTER 2: DEMOGRAPHIC MONITORING AND MANAGEMENT






Appendix E. Thresholds and observed estimates for demographic objectives described in the 2019 Conservation Strategy, 2017–2022. Parameters include occupancy of females with offspring within 23 Bear Management Units (BMUs) in the Primary Conservation Area (PCA) and 7 Occupancy Units (OUs) in Zone 1, tallied over the last 6 years; survival rate of independent females within the Demographic Monitoring Area (DMA) averaged over the last 6 years; and numbers of total reported and unreported (TRU) mortalities of independent female and male grizzly bears within the DMA averaged over the last 6 years.


		Threshold/		Year							
Parameter	Area or Sex	observed	2017	2018	2019	2020	2021	2022			
Occupancy	PCA (BMUs)	Minimum	21	21	21	21	21	21			
		Observed	23	22	22	23	23	23			
	Zone 1 (OUs)	Minimum	6	6	6	6	6	6			
		Observed	7	7	7	7	7	7			
Survival rate	Female	Minimum	0.93	0.93	0.93	0.93	0.93	0.92			
		Observed	0.95	0.93	0.94	0.93	0.93	0.93			
RU mortalities	Female	Maximum	22	22	23	24	25	25			
		Observed	14	15	16	13	15	15			
	Male	Maximum	28	28	29	29	30	30			
		Observed	19	21	21	21	23	25			

Grizzly Bear Population Monitoring in the NCDE - 2022

Median population estimate in 2018 1,047 bears Probability₈₀₀ >99%

No annual estimate reported

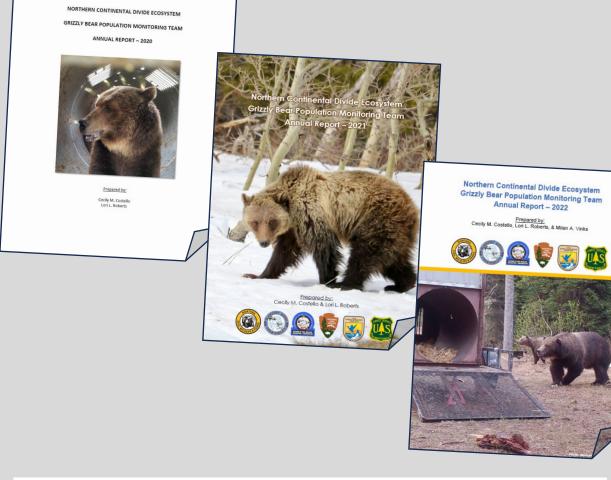
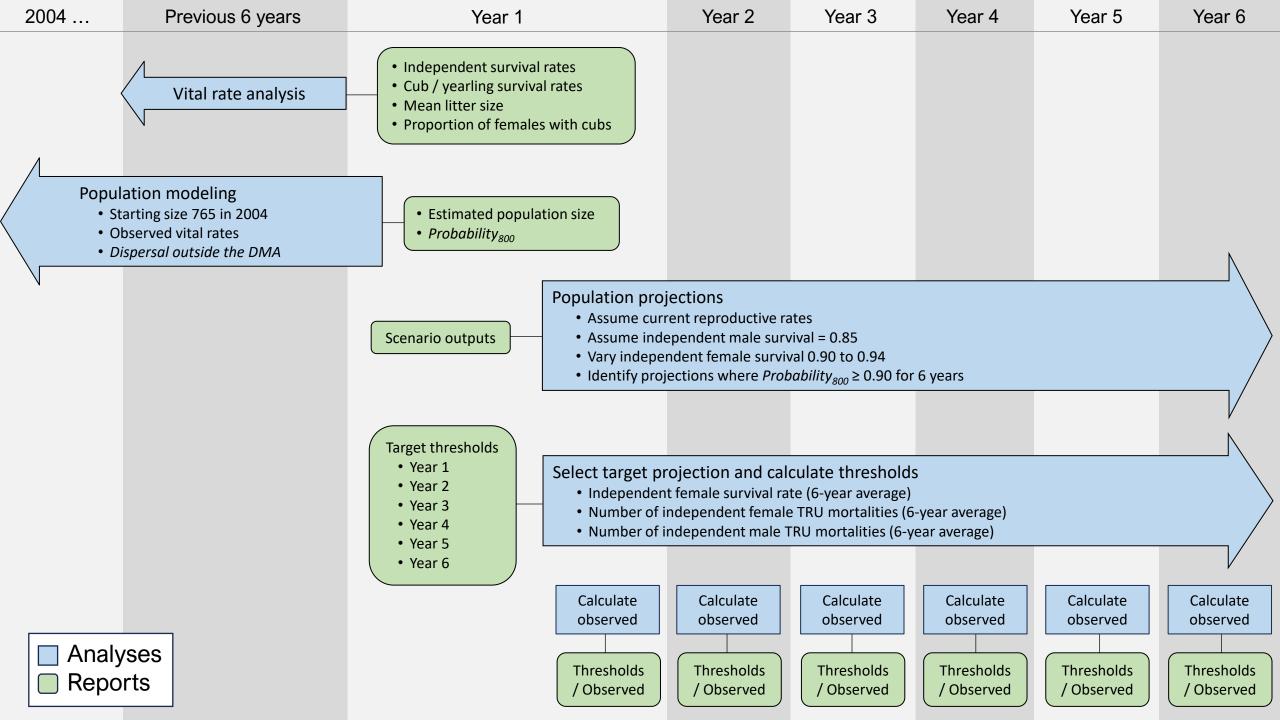



Table 6. Projected population size of grizzly bears in the NCDE for the management period 2019–2023, assuming previously observed vital rates (Costello et al. 2016).

	Year						
Estimate	2019	2020	2021	2022	2023		
Population size	1,068	1,092	1,114	1,138	1,163		
95th percentile	906-1,243	923-1,276	938-1,305	958-1,335	971-1,366		

